首页> 外文期刊>Expert Systems with Application >Cut-in vehicle warning system exploiting multiple rotational images of SVM cameras
【24h】

Cut-in vehicle warning system exploiting multiple rotational images of SVM cameras

机译:利用SVM摄像机的多个旋转图像的嵌入式车辆警告系统

获取原文
获取原文并翻译 | 示例

摘要

Smart cruise control (SCC) is one of the representative systems of advanced driver assistance systems (ADAS). Conventional SCC systems have a problem in that they cannot detect a cut-in vehicle in a short distance because the field of view (FOV) of their sensors for detecting vehicles ahead is limited. To solve this problem, this paper proposes a novel method using surround view monitoring (SVM) cameras which can observe the surroundings of a host vehicle without blind spots. To reduce the variation of projected appearance according to the relative position, this paper proposes to exploit multiple virtual camera images (rotational images). In each rotational image, vehicles are detected using a part-based method: tires are detected and then vehicles are detected by combining the tires. Detected tires in multiple rotational images are integrated and tracked in 3D space. Finally, the proposed method determines whether a vehicle has intruded into the cut-in zone based on the position and orientation of the vehicle. The proposed method succeeds to detect vehicle even by a simple method thanks to the rotational image even without any special HAW. The proposed method uses only the sensor adopted in mass-produced vehicles and it is very practical. Moreover, the method can estimate the surrounding vehicle position accurately enough to be used in the braking control system. The performance of the proposed method is evaluated with various driving situations, of which the total length is 447.8 min (43.5 min for the test track and 404.3 min for natural driving). Among 211 cut-in events, 208 events are correctly warned and only 3 false warnings occur. Although the proposed method simultaneously processes the rotational images generated from three SVM cameras (forward, left, and right), the average processing time per frame takes about 58 ms. (C) 2019 Elsevier Ltd. All rights reserved.
机译:智能巡航控制(SCC)是高级驾驶员辅助系统(ADAS)的代表性系统之一。常规的SCC系统的问题在于,由于其用于检测前方车辆的传感器的视场(FOV)受到限制,因此它们无法在短距离内检测到被盗车辆。为了解决这个问题,本文提出了一种使用环视监控相机的新方法,该相机可以观察没有盲点的宿主车辆的周围环境。为了减少投影外观根据相对位置的变化,本文提出利用多个虚拟摄像机图像(旋转图像)。在每个旋转图像中,使用基于零件的方法检测车辆:检测轮胎,然后通过组合轮胎检测车辆。在多个旋转图像中检测到的轮胎被整合并在3D空间中进行跟踪。最终,所提出的方法基于车辆的位置和方向来确定车辆是否已进入切入区域。即使没有任何特殊的HAW,由于旋转图像,所提出的方法即使通过简单的方法也能够成功地检测车辆。所提出的方法仅使用批量生产的车辆中采用的传感器,这是非常实用的。此外,该方法可以足够精确地估计周围车辆位置以在制动控制系统中使用。在各种驾驶情况下评估了所提出方法的性能,其总长度为447.8分钟(测试轨道为43.5分钟,自然驾驶为404.3分钟)。在211个切入事件中,有208个事件得到了正确警告,并且仅出现3个错误警告。尽管所提出的方法同时处理从三个SVM摄像机(向前,向左和向右)生成的旋转图像,但是每帧的平均处理时间约为58毫秒。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号