首页> 外文期刊>Expert Systems with Application >An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks
【24h】

An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks

机译:用于全局优化任务的高效混沌突变飞蛾启发式优化器

获取原文
获取原文并翻译 | 示例

摘要

Moth-flame optimization algorithm (MFO) is a new nature-inspired meta-heuristic based on the navigation routine of moths in the environment known as transverse orientation. For some complex optimization tasks, especially high dimensional and multimodal problems, the conventional MFO may face problems in the convergence trends or be trapped into the local and deceptive optima. Therefore, in this study, two strategies have been introduced into the conventional MFO to get a more stable sense of balance between the exploration and exploitation propensities. First, Gaussian mutation is employed to increase the population diversity of MFO. Then, a chaotic local search is applied to the flame updating process of MFO for better exploiting the locality of the solutions. The proposed CLSGMFO approach was compared against a wide range of well-known classical metaheuristic algorithms (MAs) and various advanced MAs using 23 classical benchmark functions. It was shown that the designed CLSGMFO can outperform most of the popular MAs in terms of solution quality and convergence speed. Moreover, based on CLSGMFO, a hybrid kernel extreme learning machine model, which is called CLSGMFO-KELM, is established to deal with financial stress prediction scenarios. To investigate the effectiveness of the CLSGMFO-KELM model, the proposed hybrid system was tested on two widely used financial datasets and compared against a broad array of popular classifiers. The results demonstrate that the proposed learning scheme can offer a superior kernel extreme learning machine model with excellent predictive performance. Accordingly, the proposed CLSGMFO can serve as an effective and efficient computer-aided tool for financial prediction. (C) 2019 Elsevier Ltd. All rights reserved.
机译:飞蛾最优化算法(MFO)是一种新的自然启发式元启发式算法,它基于飞蛾在称为横向方向的环境中的导航例程。对于某些复杂的优化任务,尤其是高维和多峰问题,常规MFO可能会在收敛趋势中面临问题,或者陷入局部和欺骗性的最优中。因此,在这项研究中,常规MFO中引入了两种策略,以使勘探和开发倾向之间的平衡更加稳定。首先,采用高斯突变来增加MFO的种群多样性。然后,将混沌局部搜索应用于MFO的火焰更新过程,以更好地利用解决方案的局部性。拟议的CLSGMFO方法与使用23个经典基准函数的各种著名的经典元启发式算法(MA)和各种高级MA进行了比较。结果表明,在解决方案质量和收敛速度方面,设计的CLSGMFO可以胜过大多数流行的MA。此外,基于CLSGMFO,建立了混合内核极限学习机模型,称为CLSGMFO-KELM,以应对财务压力预测场景。为了研究CLSGMFO-KELM模型的有效性,在两个广泛使用的金融数据集上对提出的混合系统进行了测试,并与各种流行的分类器进行了比较。结果表明,所提出的学习方案可以提供具有优异的预测性能的高级内核极限学习机模型。因此,提出的CLSGMFO可以作为有效且高效的计算机辅助工具进行财务预测。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号