首页> 外文期刊>Expert Systems with Application >An advanced bispectrum features for EEG-based motor imagery classification
【24h】

An advanced bispectrum features for EEG-based motor imagery classification

机译:用于基于EEG的运动图像分类的高级双光谱功能

获取原文
获取原文并翻译 | 示例

摘要

Motor imagery (MI)-related brain activities can be effectively described by frequency analysis. Bispectrum is developed to overcome the drawback of power spectrum that the estimation of power spectrum discards the phase relationship among frequency components. However, the widely used bispectral features extraction method adds up all bispectral values as one feature, which could lead to the loss of effective information and increase of the sensitivity to non-linear and non-Gaussian noises. Thus, the representative bispectral features extraction method may be inefficient for MI classification. In addition, recent research suggests that the variations of EEG signals could provide more useful underlying information of event-related brain responses. This paper presents an advanced variations based bispectral feature extraction method to improve the performance of MI classification. The proposed method calculates the variations of MI-related EEG signals as input to bispectrum estimation. Besides, a new segmented bispectral sum features are developed to reduce the influence of non-linear and non-Gaussian noises and emphasize the valuable information for MI classification. The dataset collected in our laboratory and BCI Competition IV dataset 2b were adopted to validate the proposed method. The results indicate that the proposed method outperforms the power spectrum based methods and the representative bispectral features based methods. Moreover, compared to other state-of-the-art works, our approach also achieves the greater performance for MI classification. (C) 2019 Elsevier Ltd. All rights reserved.
机译:运动图像(MI)相关的大脑活动可以通过频率分析有效地描述。开发双频谱是为了克服功率谱的缺点,即功率谱的估计会丢弃频率分量之间的相位关系。但是,广泛使用的双光谱特征提取方法将所有双光谱值加在一起作为一个特征,这可能导致有效信息的丢失并增加了对非线性和非高斯噪声的敏感性。因此,代表性的双光谱特征提取方法对于MI分类可能效率不高。此外,最近的研究表明,脑电信号的变化可以提供与事件相关的大脑反应的更有用的基础信息。本文提出了一种改进的基于变分的双光谱特征提取方法,以提高MI分类的性能。所提出的方法计算与MI有关的EEG信号的变化作为双谱估计的输入。此外,开发了一种新的分段双谱和特征,以减少非线性噪声和非高斯噪声的影响,并强调用于MI分类的有价值的信息。我们实验室收集的数据集和BCI Competition IV数据集2b被用来验证所提出的方法。结果表明,该方法优于基于功率谱的方法和基于代表性双谱特征的方法。此外,与其他最新技术作品相比,我们的方法在MI分类方面也取得了更高的性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号