首页> 外文期刊>Expert Systems with Application >Distinguishing mental attention states of humans via an EEG-based passive BCI using machine learning methods
【24h】

Distinguishing mental attention states of humans via an EEG-based passive BCI using machine learning methods

机译:使用机器学习方法通​​过基于EEG的被动BCI区分人类的心理注意状态

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in technology bring about novel operating environments where the role of human participants is reduced to passive observation. While opening new frontiers in productivity and lifestyle, such environments also create hazards related to the inability of human individuals to maintain focus and concentration during passive control tasks. A passive brain-computer interface for monitoring mental attention states of human individuals (focused, unfocused, and drowsy) by using electroencephalographic (EEG) brain activity imaging and machine learning data analysis methods is developed in this work. An EEG data processing pipeline and a machine learning mental state detection algorithm using the Support Vector Machine (SVM) method were designed and compared with k-Nearest Neighbor and Adaptive Neuro-Fuzzy System methods. To collect 25 h of EEG data from 5 participants, a classic EEG headset was modified. We found that the changes in EEG activity in frontal and parietal lobes occurring at 1-5 Hz and 10-15 Hz frequency bands were associated with the changes in individuals' attention state. We demonstrated the ability to use such changes to identify individuals' attention state with 96.70% (best) and 91.72% (avg.) accuracy in experimental settings using a version of continuous performance task with SVM-based mental state detector. The findings help guide the design of future systems for monitoring the state of human individuals by means of EEG brain activity data. (C) 2019 Elsevier Ltd. All rights reserved.
机译:技术的最新进展带来了新颖的操作环境,其中人类参与者的角色被简化为被动观察。在打开生产力和生活方式的新领域时,这种环境还会造成与人类在被动控制任务中无法保持专注和专注有关的危害。在这项工作中,开发了一种被动脑计算机接口,该接口通过使用脑电图(EEG)脑活动成像和机器学习数据分析方法来监视人类的精神注意力状态(集中,不集中和困倦)。设计了脑电数据处理管道和使用支持向量机(SVM)方法的机器学习心理状态检测算法,并将其与k最近邻居和自适应神经模糊系统方法进行了比较。为了从5位参与者那里收集25小时的EEG数据,对经典的EEG耳机进行了改装。我们发现,在1-5 Hz和10-15 Hz频段发生的额叶和顶叶脑电活动的变化与个人注意力状态的变化有关。我们证明了使用这种变化来识别个人注意力状态的能力,该能力在带有基于SVM的心理状态检测器的连续性能任务的实验设置中,在实验设置中的准确度分别为96.70%(最佳)和91.72%(平均)。这些发现有助于指导未来通过EEG脑活动数据监测人类状态的系统的设计。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号