首页> 外文期刊>Expert Systems with Application >Direct marketing campaigns in retail banking with the use of deep learning and random forests
【24h】

Direct marketing campaigns in retail banking with the use of deep learning and random forests

机译:使用深度学习和随机森林进行零售银行业的直接营销活动

获取原文
获取原文并翻译 | 示例

摘要

Credit products are a crucial part of business of banks and other financial institutions. A novel approach based on time series of customer's data representation for predicting willingness to take a personal loan is shown. Proposed testing procedure based on moving window allows detection of complex, sequential, time based dependencies between particular transactions. Moreover, this approach reduces noise by eliminating irrelevant dependencies that would occur due to the lack of time dimension analysis.The system for identifying customers interested in credit products, based on classification with random forests and deep neural networks is proposed. The promising results of empirical studies prove that the system is able to extract significant patterns from customers historical transfer and transactional data and predict credit purchase likelihood. Our approach, including the testing method, is not limited to banking sector and can be easily transferred and implemented as a general purpose direct marketing campaign system. (C) 2019 Elsevier Ltd. All rights reserved.
机译:信贷产品是银行和其他金融机构业务的重要组成部分。展示了一种基于客户数据表示的时间序列的新颖方法,用于预测个人贷款的意愿。建议的基于移动窗口的测试程序可以检测特定事务之间基于时间的复杂,依序的依赖关系。此外,该方法通过消除由于缺乏时间维度分析而产生的不相关依赖关系来降低噪声。提出了一种基于随机森林和深度神经网络分类的识别对信贷产品感兴趣的客户的系统。实证研究的有希望的结果证明,该系统能够从客户的历史转移和交易数据中提取重要模式,并预测信用购买的可能性。我们的方法(包括测试方法)不仅限于银行业,而且可以很容易地转移和实施为通用直接营销活动系统。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号