首页> 外文期刊>Expert systems with applications >Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs
【24h】

Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs

机译:使用多种输入对局部放电模式进行分类的复杂概率神经网络系统的构想

获取原文
获取原文并翻译 | 示例

摘要

Pattern recognition has a long history within electrical engineering but has recently become much more widespread as the automated capture of signal and images has been cheaper. Very many of the application of neural networks are to classification, and so are within the field of pattern recognition and classification. In this paper, we explore how probabilistic neural networks fit into the earlier framework of pattern recognition of partial discharge patterns since the PD patterns are an important tool for diagnosis of HV insulation systems. Skilled humans can identify the possible insulation defects in various representations of partial discharge (PD) data. One of the most widely used representation is phase resolved PD (PRPD) patterns. Also this paper describes a method for the automated recognition of PRPD patterns using a novel complex probabilistic neural network system for the actual classification task. The efficacy of composite neural network developed using probabilistic neural network is examined.
机译:模式识别在电气工程领域具有悠久的历史,但最近由于信号和图像的自动捕获价格便宜而变得越来越普及。神经网络在分类中有很多应用,在模式识别和分类领域也是如此。在本文中,我们探索概率神经网络如何适合局部放电模式的模式识别的早期框架,因为PD模式是诊断高压绝缘系统的重要工具。技术人员可以通过局部放电(PD)数据的各种表示来识别可能的绝缘缺陷。相位解析PD(PRPD)模式是使用最广泛的表示之一。本文还描述了一种使用新颖的复杂概率神经网络系统自动识别PRPD模式的方法,用于实际的分类任务。研究了使用概率神经网络开发的复合神经网络的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号