首页> 外文期刊>Expert systems with applications >Improved variable and value ranking techniques for mining categorical traffic accident data
【24h】

Improved variable and value ranking techniques for mining categorical traffic accident data

机译:改进的变量和值排序技术,用于挖掘分类交通事故数据

获取原文
获取原文并翻译 | 示例

摘要

The ever increasing size of datasets used for data mining and machine learning applications has placed a renewed emphasis on algorithm performance and processing strategies. This paper addresses algorithms for ranking variables in a dataset, as well as for ranking values of a specific variable. We propose two new techniques, called Max Gain (MG) and Sum Max Gain Ratio (SMGR), which are well-correlated with existing techniques, yet are much more intuitive. MG and SMGR were developed for the public safety domain using categorical traffic accident data. Unlike the typical abstract statistical techniques for ranking variables and values, the proposed techniques can be motivated as useful intuitive metrics for non-statistician practitioners in a particular domain. Additionally, the proposed techniques are generally more efficient than the more traditional statistical approaches.
机译:用于数据挖掘和机器学习应用程序的数据集规模的不断增长,重新将重点放在算法性能和处理策略上。本文介绍了用于对数据集中的变量进行排名以及对特定变量的值进行排名的算法。我们提出了两种新技术,称为最大增益(MG)和总最大增益比(SMGR),它们与现有技术紧密相关,但更加直观。使用分类的交通事故数据为公共安全领域开发了MG和SMGR。与用于对变量和值进行排名的典型抽象统计技术不同,可以将所提议的技术作为对特定领域中非统计人员的有用直观指标。另外,提出的技术通常比更传统的统计方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号