首页> 外文期刊>Expert systems with applications >A novel manufacturing defect detection method using association rule mining techniques
【24h】

A novel manufacturing defect detection method using association rule mining techniques

机译:利用关联规则挖掘技术的新型制造缺陷检测方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, manufacturing processes have become more and more complex, and meeting high-yield target expectations and quickly identifying root-cause machinesets, the most likely sources of defective products, also become essential issues. In this paper, we first define the root-cause machineset identification problem of analyzing correlations between combinations of machines and the defective products. We then propose the Root-cause Machine Identifier (RMI) method using the technique of association rule mining to solve the problem efficiently and effectively. The experimental results of real datasets show that the actual root-cause machinesets are almost ranked in the top 10 by the proposed RMI method.
机译:近年来,制造过程变得越来越复杂,满足高产量目标期望并快速确定根本原因机器集(最有可能产生缺陷产品的原因)也成为必不可少的问题。在本文中,我们首先定义了根本原因机器集识别问题,以分析机器组合与有缺陷产品之间的相关性。然后,我们提出了一种使用关联规则挖掘技术的根本原因机器标识符(RMI)方法,以有效地解决该问题。真实数据集的实验结果表明,通过提出的RMI方法,实际的根本原因机器集几乎排在前10位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号