首页> 外文期刊>Expert Systems with Application >Building credit scoring models using genetic programming
【24h】

Building credit scoring models using genetic programming

机译:使用遗传规划建立信用评分模型

获取原文
获取原文并翻译 | 示例

摘要

Credit scoring models have been widely studied in the areas of statistics, machine learning, and artificial intelligence (AI). Many novel approaches such as artificial neural networks (ANNs), rough sets, or decision trees have been proposed to increase the accuracy of credit scoring models. Since an improvement in accuracy of a fraction of a percent might translate into significant savings, a more sophisticated model should be proposed to significantly improving the accuracy of the credit scoring mode. In this paper, genetic programming (GP) is used to build credit scoring models. Two numerical examples will be employed here to compare the error rate to other credit scoring models including the ANN, decision trees, rough sets, and logistic regression. On the basis of the results, we can conclude that GP can provide better performance than other models.
机译:信用评分模型已在统计,机器学习和人工智能(AI)领域得到广泛研究。为了提高信用评分模型的准确性,已经提出了许多新颖的方法,例如人工神经网络(ANN),粗糙集或决策树。由于精确度提高百分之一可能会节省大量资金,因此应该提出一种更复杂的模型来显着提高信用评分模式的准确性。在本文中,遗传规划(GP)用于建立信用评分模型。这里将使用两个数值示例将错误率与其他信用评分模型进行比较,包括ANN,决策树,粗糙集和逻辑回归。根据结果​​,我们可以得出结论,GP可以提供比其他模型更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号