首页> 外文期刊>Expert Systems with Application >MMDT: a multi-valued and multi-labeled decision tree classifier for data mining
【24h】

MMDT: a multi-valued and multi-labeled decision tree classifier for data mining

机译:MMDT:用于数据挖掘的多值和多标签决策树分类器

获取原文
获取原文并翻译 | 示例

摘要

We have proposed a decision tree classifier named MMC (multi-valued and multi-labeled classifier) before. MMC is known as its capability of classifying a large multi-valued and multi-labeled data. Aiming to improve the accuracy of MMC, this paper has developed another classifier named MMDT (multi-valued and multi-labeled decision tree). MMDT differs from MMC mainly in attribute selection. MMC attempts to split a node into child nodes whose records approach the same multiple labels. It basically measures the average similarity of labels of each child node to determine the goodness of each splitting attribute. MMDT, in contrast, uses another measuring strategy which considers not only the average similarity of labels of each child node but also the average appropriateness of labels of each child node. The new measuring strategy takes scoring approach to have a look-ahead measure of accuracy contribution of each attribute's splitting. The experimental results show that MMDT has improved the accuracy of MMC.
机译:在此之前,我们提出了一种决策树分类器,称为MMC(多值和多标签分类器)。 MMC被称为能够对大型多值和多标签数据进行分类的功能。为了提高MMC的准确性,本文开发了另一个分类器MMDT(多值和多标签决策树)。 MMDT与MMC的主要区别在于属性选择。 MMC尝试将一个节点拆分为子节点,这些子节点的记录接近相同的多个标签。它基本上测量每个子节点的标签的平均相似度,以确定每个拆分属性的优劣。相反,MMDT使用另一种测量策略,该策略不仅考虑每个子节点的标签的平均相似性,而且考虑每个子节点的标签的平均适用性。新的度量策略采用评分方法,对每个属性的分割的准确性贡献进行了前瞻性度量。实验结果表明,MMDT提高了MMC的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号