首页> 外文期刊>Expert systems with applications >Query expansion for document retrieval based on fuzzy rules and user relevance feedback techniques
【24h】

Query expansion for document retrieval based on fuzzy rules and user relevance feedback techniques

机译:基于模糊规则和用户相关反馈技术的文档检索查询扩展

获取原文
获取原文并翻译 | 示例

摘要

In document retrieval systems, proper query terms significantly affect the performance of document retrieval systems. The performance of the systems can be improved by using query expansion techniques. In this paper, we present a new method for query expansion based on user relevance feedback techniques for mining additional query terms. According to the user's relevance feedback, the proposed query expansion method calculates the degrees of importance of relevant terms of documents in the document database. The relevant terms have higher degrees of importance may become additional query terms. The proposed method uses fuzzy rules to infer the weights of the additional query terms. Then, the weights of the additional query terms and the weights of the original query terms are used to form the new query vector, and we use this new query vector to retrieve documents. The proposed query expansion method increases the precision rates and the recall rates of information retrieval systems for dealing with document retrieval. It gets a higher average recall rate and a higher average precision rate than the method presented in Chang, Y. C, Chen, S. M., & Liau, C. J. (2003). A new query expansion method based on fuzzy rules. Proceedings of the Seventh Joint Conference on AI, Fuzzy System, and Grey System, Taipei, Taiwan, Republic of China.
机译:在文档检索系统中,正确的查询词会严重影响文档检索系统的性能。通过使用查询扩展技术可以提高系统的性能。在本文中,我们提出了一种基于用户相关性反馈技术的查询扩展新方法,用于挖掘其他查询词。根据用户的相关反馈,提出的查询扩展方法计算出文档数据库中文档相关术语的重要程度。相关术语具有较高的重要性,可能会成为其他查询术语。所提出的方法使用模糊规则来推断附加查询词的权重。然后,使用附加查询词的权重和原始查询词的权重来形成新的查询向量,并且我们使用此新的查询向量来检索文档。所提出的查询扩展方法提高了处理文档检索的信息检索系统的准确率和查全率。与Chang,Y. C.,Chen,S.M.,&Liau,C.J.(2003)提出的方法相比,它具有更高的平均召回率和更高的平均准确率。一种新的基于模糊规则的查询扩展方法。中华民国台北,第七届人工智能,模糊系统和灰色系统联合会议论文集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号