首页> 外文期刊>Expert systems with applications >Generating rules from examples of human multiattribute decision making should be simple
【24h】

Generating rules from examples of human multiattribute decision making should be simple

机译:从人类多属性决策示例中生成规则应该很简单

获取原文
获取原文并翻译 | 示例

摘要

How many prototypes or clusters are needed to predict real world human multiattribute subjective decision making? Although subjective decision making problems occur daily in our life, they have received relatively little attention in artificial intelligence, machine learning and data mining communities. We claim that for most problems, a simple set of rules derived by a nearest neighbor algorithm is the appropriate approach. A simple version of a nearest neighbor model is tested and compared with two other well-established classification methods: neural networks and classifications and regression trees (CART). The results of the experiments show that the simple nearest neighbor method provides very accurate predictions while using very few prototypes or clusters. Although not always the best in accuracy, the differences are sufficiently slight to not warrant greater complexity in deriving rules. Our research on the effectiveness of parsimonious rule sets suggests that decision trees with more than 7-10 branches are not needed for capturing most human multiattribute decision-making problems, and minimal time or memory resources should be used to generate decision making rules.
机译:预测现实世界中人类多属性主观决策需要多少原型或群集?尽管主观决策问题在我们的生活中每天都在发生,但它们在人工智能,机器学习和数据挖掘社区中受到的关注相对较少。我们认为,对于大多数问题,由最近邻居算法得出的一组简单规则是合适的方法。测试了最简单邻居模型的简单版本,并将其与其他两种公认的分类方法进行比较:神经网络和分类以及回归树(CART)。实验结果表明,简单的最近邻方法在使用很少的原型或簇的情况下提供了非常准确的预测。尽管并非总是精度最高,但是差异足够小,以至于不能保证规则推导的复杂性。我们对简约规则集有效性的研究表明,捕获大多数人类多属性决策问题并不需要具有超过7-10个分支的决策树,并且应使用最少的时间或内存资源来生成决策规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号