首页> 外文期刊>Expert systems with applications >A new hybrid data mining technique using a regression case based reasoning: Application to financial forecasting
【24h】

A new hybrid data mining technique using a regression case based reasoning: Application to financial forecasting

机译:一种新的基于回归案例推理的混合数据挖掘技术:在财务预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a regression case based reasoning (RCBR) which applies different weights to independent variables before finding similar cases. The traditional CBR model has focused on finding similar cases from a case base without considering the importance of independent variables. Thus, when extracting similar cases the traditional CBR has put same weights on each independent variable. The proposed regression CBR (RCBR) finds a relative importance of independent variables from the relationship between independent variables and a dependent variable using a regression analysis and puts relative weights using regression coefficients on independent variables. Then, it selects nearest neighbor or similar cases using weighted independent variables through the traditional CBR machine and updates weights dynamically for the next target case and again performs the traditional CBR machine.
机译:本文提出了一种基于回归案例的推理(RCBR),在发现相似案例之前,将不同的权重应用于自变量。传统的CBR模型侧重于从案例库中查找相似案例,而不考虑自变量的重要性。因此,当提取相似的案例时,传统的CBR对每个自变量赋予相同的权重。提出的回归CBR(RCBR)使用回归分析从自变量与因变量之间的关系中找出自变量的相对重要性,并使用回归系数对自变量进行相对权重确定。然后,它通过传统的CBR机器使用加权自变量选择最近的邻居或类似情况,并为下一个目标情况动态更新权重,并再次执行传统的CBR机器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号