首页> 外文期刊>Expert systems with applications >Automated trend analysis of proteomics data using an intelligent data mining architecture
【24h】

Automated trend analysis of proteomics data using an intelligent data mining architecture

机译:使用智能数据挖掘架构对蛋白质组学数据进行自动趋势分析

获取原文
获取原文并翻译 | 示例

摘要

Proteomics is a field dedicated to the analysis and identification of proteins within an organism. Within proteomics, two-dimensional electrophoresis (2-DE) is currently unrivalled as a technique to separate and analyse proteins from tissue samples. The analysis of post-experimental data produced from this technique has been identified as an important step within this overall process. Some of the long-term aims of this analysis are to identify targets for drug discovery and proteins associated with specific organism states. The large quantities of high-dimensional data produced from such experimentation requires expertise to analyse, which results in a processing bottleneck, limiting the potential of this approach. We present an intelligent data mining architecture that incorporates both data-driven and goal-driven strategies and is able to accommodate the spatial and temporal elements of the dataset under analysis. The architecture is able to automatically classify interesting proteins with a low number of false positives and false negatives. Using a data mining technique to detect variance within the data before classification offers performance advantages over other statistical variance techniques in the order of between 16 and 46%.
机译:蛋白质组学是一个致力于分析和鉴定生物体内蛋白质的领域。在蛋白质组学中,二维电泳(2-DE)作为一种从组织样品中分离和分析蛋白质的技术,目前尚无与伦比。通过这种技术产生的实验后数据分析已被确定为整个过程中的重要一步。该分析的一些长期目标是确定药物发现的目标和与特定生物体状态相关的蛋白质。通过这种实验产生的大量高维数据需要专业知识进行分析,这会导致处理瓶颈,从而限制了这种方法的潜力。我们提出了一种智能的数据挖掘架构,该架构融合了数据驱动和目标驱动策略,并且能够容纳正在分析的数据集的时空元素。该体系结构能够自动分类感兴趣的蛋白质,且假阳性和假阴性的数量少。在分类之前使用数据挖掘技术检测数据内的方差提供了优于其他统计方差技术的性能优势,大约在16%到46%之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号