首页> 外文期刊>Expert Systems with Application >Deep understanding in industrial processes by complementing human expertise with interpretable patterns of machine learning
【24h】

Deep understanding in industrial processes by complementing human expertise with interpretable patterns of machine learning

机译:通过以可解释的机器学习模式来补充人类的专业知识,从而深刻理解工业过程

获取原文
获取原文并翻译 | 示例

摘要

Experts in industrial processes rely on domain knowledge (DK) repositories to identify the causes of abnormal situations in order to make appropriate decisions that mitigate the negative effects of such events. These DK repositories need to be enriched and updated continuously as different unexpected events occur. A common causality analysis method in DK repositories is the fault tree analysis (FTA). The major limitation of updating a fault tree is that it requires in-depth system knowledge, which involves a high level of human experience. Data exploitation based on machine learning (ML) can address this limitation by deeply analyzing process historical data to discover hidden phenomena that are difficult for human experts to identify and to analyze. This paper proposes an innovative methodology that combines domain knowledge, in the form of FTA, with additional knowledge extracted by a descriptive ML method called logical analysis of data (LAD). More specifically, LAD is a classification method, which provides as a by-product a set of interpretable rules (patterns) explaining the classification results. The patterns extracted from historical data represent an important and complementary source of knowledge that provides experts with insights and allows them to better understand the process operations. The objective of using these patterns in the proposed methodology is to provide automatic enrichment and updating of existing fault trees in order to achieve accurate fault detection and diagnosis (FDD) in industrial processes. The proposed methodology is demonstrated using fault trees constructed for two different systems in the process industry. The fault tree for each system was updated successfully with minimal effort from process experts. (C) 2019 Elsevier Ltd. All rights reserved.
机译:工业流程的专家依靠领域知识(DK)知识库来识别异常情况的原因,以便做出适当的决策来减轻此类事件的负面影响。随着不同的意外事件发生,这些DK存储库需要不断丰富和更新。 DK存储库中常见的因果分析方法是故障树分析(FTA)。更新故障树的主要限制是它需要深入的系统知识,这需要高水平的人员经验。基于机器学习(ML)的数据开发可以通过对过程历史数据进行深入分析来发现隐藏的现象,从而解决这些限制,而这是人类专家难以识别和分析的。本文提出了一种创新的方法,该方法将FTA形式的领域知识与通过称为数据逻辑分析(LAD)的描述性ML方法提取的其他知识相结合。更具体地说,LAD是一种分类方法,它以副产品的形式提供一组解释分类结果的可解释规则(模式)。从历史数据中提取的模式代表着重要且互补的知识来源,可为专家提供见解,并使他们能够更好地理解过程操作。在提议的方法中使用这些模式的目的是提供现有故障树的自动丰富和更新,以便在工业过程中实现准确的故障检测和诊断(FDD)。使用为过程工业中的两个不同系统构建的故障树演示了所提出的方法。每个系统的故障树都可以通过过程专家的最少努力而成功更新。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号