首页> 外文期刊>Expert Systems with Application >A robust deep convolutional neural network with batch-weighted loss for heartbeat classification
【24h】

A robust deep convolutional neural network with batch-weighted loss for heartbeat classification

机译:具有批次加权损失的鲁棒深度卷积神经网络用于心跳分类

获取原文
获取原文并翻译 | 示例

摘要

The early detection of abnormal heart rhythm has become crucial due to the spike in the rate of deaths caused by cardiovascular diseases. While many existing works tried to classify heartbeats accurately, they suffered from the imbalance between heartbeat classes in the available ECG datasets since abnormal heartbeats appear much less frequently than normal ones. In addition, most of existing methods heavily rely on data preprocessing such as noise removal and feature extraction, which is computationally expensive, thus limits their use on low-cost portable ECG devices.We present a novel deep convolutional neural network based on state-of-the-art deep learning techniques for accurate heartbeat classification. We suggest a batch-weighted loss function to better quantify the loss in order to overcome the imbalance between classes. The loss weights dynamically change as the distribution of classes in each batch changes. Also, we propose to use multiple heartbeats for more effective heartbeat classification.Even though we use ECG signal from one lead only without any data preprocessing, our method consistently outperforms existing methods of 5-class heartbeat classification. Our accuracy, positive productivity, sensitivity and specificity under intra-patient paradigm are 99.48%, 98.83%, 96.97% and 99.87%, and those under inter-patient paradigm are 88.34%, 48.25%, 90.90% and 88.51% respectively. (C) 2018 Elsevier Ltd. All rights reserved.
机译:由于心血管疾病导致的死亡率急剧上升,因此异常心律的早期检测变得至关重要。尽管许多现有工作试图准确地对心跳进行分类,但由于心跳异常的出现频率远低于正常心跳,因此它们在可用ECG数据集中的心跳类别之间不平衡。另外,大多数现有方法严重依赖数据预处理,例如噪声去除和特征提取,这在计算上很昂贵,因此限制了它们在低成本便携式ECG设备上的使用。我们提出了一种基于状态的新型深度卷积神经网络先进的深度学习技术,可进行准确的心跳分类。我们建议使用批次加权损失函数来更好地量化损失,以克服类别之间的不平衡。损失权重随每个批次中类别的分布而动态变化。此外,我们建议使用多个心跳进行更有效的心跳分类。即使我们仅使用一根导线的ECG信号而没有任何数据预处理,但我们的方法始终优于现有的5类心跳分类方法。住院模式下的准确性,阳性生产率,敏感性和特异性分别为99.48%,98.83%,96.97%和99.87%,而住院间模式下的准确性,阳性生产率,敏感性和特异性分别为88.34%,48.25%,90.90%和88.51%。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2019年第5期|75-84|共10页
  • 作者

    Sellami Ali; Hwang Heasoo;

  • 作者单位

    Univ Seoul, Dept Comp Sci & Engn, Seoul 02504, South Korea;

    Univ Seoul, Dept Comp Sci & Engn, Seoul 02504, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号