首页> 外文期刊>Expert Systems with Application >Significance-based discriminative sequential pattern mining
【24h】

Significance-based discriminative sequential pattern mining

机译:基于重要性的区分顺序模式挖掘

获取原文
获取原文并翻译 | 示例

摘要

Discriminative sequential patterns are sub-sequences whose occurrences exhibit significant differences across sequential data sets with different class labels. The discovery of such types of patterns has many practical applications in different fields. To date, various algorithms for mining discriminative sequential patterns have been proposed. However, the reported patterns from these methods usually contain many false positives that only hold in the sample data by chance. To alleviate this issue, we put forward the concept of significance-based discriminative sequential pattern mining and a corresponding algorithm DSPM-MTC (Discriminative Sequential Pattern Mining with Multiple Testing Correction). The key idea of DSPM-MTC is to integrate the multiple hypothesis testing correction procedure into the pattern mining process to generate a pattern set with error rate control. To demonstrate the effectiveness of DSPM-MTC, we conduct a series of experiments on real sequential data sets and simulation data sets. The experimental results show that DSPM-MTC can effectively recognize false discoveries to generate a pattern set with statistical quality control. (C) 2018 Elsevier Ltd. All rights reserved.
机译:区分顺序模式是子序列,其出现在具有不同类别标签的顺序数据集之间显示出显着差异。这种类型的模式的发现在不同领域中具有许多实际应用。迄今为止,已经提出了用于挖掘区分顺序模式的各种算法。但是,这些方法报告的模式通常包含许多误报,这些误报仅偶然地保留在样本数据中。为了缓解这个问题,我们提出了基于重要性的判别顺序模式挖掘的概念和相应的算法DSPM-MTC(具有多重测试校正的区分顺序模式挖掘)。 DSPM-MTC的关键思想是将多重假设测试校正程序集成到模式挖掘过程中,以生成具有错误率控制的模式集。为了证明DSPM-MTC的有效性,我们对真实的顺序数据集和模拟数据集进行了一系列实验。实验结果表明,DSPM-MTC可以有效识别错误发现,从而生成具有统计质量控制的模式集。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号