首页> 外文期刊>Expert Systems with Application >Classification by multi-semantic meta path and active weight learning in heterogeneous information networks
【24h】

Classification by multi-semantic meta path and active weight learning in heterogeneous information networks

机译:异构信息网络中的多语义元路径分类和主动权重学习

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous information network (HIN) is a kind of large-scale network which contains different types of objects and complex links. It is distinguished from a homogenous network for its heterogeneity of objects represented as nodes and complexity of links, which also makes the object classification more difficult. A meta-path can denote the relationship between nodes in HINs, and the path information can be enriched by extracting jump-paths. Based on this idea, the problem of data sparseness can be alleviated effectively. As multiple meta-paths represent different semantics, we propose an active weight learning method for each type, which aims to maximize the weight of meta-path with strong correlation and lower the weight if the correlation is weak. The feature matrix based on the meta-path is constructed and the Random Forest classifier is trained to implement the node classification in HIN5. The experimental results show that our method achieves better performance in the complex network by using the fewer labeled data. The active learning strategy is effective for identifying objects to label for training. (C) 2019 Elsevier Ltd. All rights reserved.
机译:异构信息网络(HIN)是一种包含不同类型的对象和复杂链接的大规模网络。它与同类网络的区别在于对象的异构性(代表节点)和链接的复杂性,这也使对象分类更加困难。元路径可以表示HIN中节点之间的关系,并且可以通过提取跳转路径来丰富路径信息。基于此思想,可以有效缓解数据稀疏问题。由于多个元路径代表了不同的语义,因此我们针对每种类型提出了一种主动权重学习方法,旨在最大化具有强相关性的元路径的权重,并在相关性较弱时降低权重。构造基于元路径的特征矩阵,并训练随机森林分类器以实现HIN5中的节点分类。实验结果表明,通过使用较少的标记数据,我们的方法在复杂的网络中可以获得更好的性能。主动学习策略对于识别要标记为训练的对象是有效的。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号