首页> 外文期刊>Expert systems with applications >Automatic determination of diseases related to lymph system from lymphography data using principles component analysis (PCA), fuzzy weighting pre-processing and ANFIS
【24h】

Automatic determination of diseases related to lymph system from lymphography data using principles component analysis (PCA), fuzzy weighting pre-processing and ANFIS

机译:使用主成分分析(PCA),模糊加权预处理和ANFIS从淋巴摄影数据自动确定与淋巴系统有关的疾病

获取原文
获取原文并翻译 | 示例

摘要

It is evident that usage of machine learning methods in disease diagnosis has been increasing gradually. In this study, diagnosis of lymph diseases, which is a very common and important disease, was conducted with such a machine learning system. In this study, we have detected on lymph diseases using principles component analysis (PCA), fuzzy weighting pre-processing and adaptive neuro-fuzzy inference system (ANFIS). The approach system has three stages. In the first stage, dimension of lymph diseases dataset that has 18 features is reduced to four features using principles component analysis. In the second stage, a new weighting scheme based on fuzzy weighting method was utilized as a pre-processing step before the main classifier. Then, in the third stage, ANFIS was our used classifier. We took the lymph diseases dataset used in our study from the UCI machine learning database. The obtained classification accuracy of our system was 88.83% and it was very promising with regard to the other classification applications in the literature for this problem.
机译:显然,机器学习方法在疾病诊断中的使用已逐渐增加。在这项研究中,使用这种机器学习系统进行了淋巴疾病的诊断,淋巴疾病是一种非常常见和重要的疾病。在这项研究中,我们已经使用主成分分析(PCA),模糊加权预处理和自适应神经模糊推理系统(ANFIS)检测了淋巴疾病。进场系统分为三个阶段。在第一阶段,使用主成分分析将具有18个特征的淋巴疾病数据集的维数减少为4个特征。在第二阶段,基于模糊加权方法的新加权方案被用作主分类器之前的预处理步骤。然后,在第三阶段,ANFIS是我们使用的分类器。我们从UCI机器学习数据库中提取了本研究中使用的淋巴疾病数据集。我们的系统获得的分类精度为88.83%,对于文献中针对该问题的其他分类应用而言,这是非常有前途的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号