首页> 外文期刊>Expert systems with applications >A weighted string pattern matching-based passage ranking algorithm for video question answering
【24h】

A weighted string pattern matching-based passage ranking algorithm for video question answering

机译:基于加权字符串模式匹配的视频问答段落排序算法

获取原文
获取原文并翻译 | 示例

摘要

Video question answering aims to pinpoint answers in response to user's specified questions. However, most question answering technologies involve in integrating rich specific external knowledge such as syntactic parsers, which are often unavailable for many languages. In this paper, we present a new string pattern matching-based passage ranking algorithm for extending traditional text Q/A toward videoQ/A. Users interact with our videoQ/A system through natural language questions whereas our system returns three sentence-length passages with corresponding video clips as answers. We collect 45 GB Discovery videos and 253 Chinese questions for evaluation. The experimental results showed that our method outperformed six top-performed ranking models. It is 7.39% better than the second best method (language model-based) in relatively MRR score and 6.12% in precision rate. Besides, we also show that the use of a trained Chinese word segmentation tool did decrease the overall videoQ/A performance where most ranking algorithms dropped at least 10% in relatively MRR, precision, and answer pattern recall rates.
机译:视频问题解答旨在根据用户指定的问题查明答案。但是,大多数问答技术都涉及集成丰富的特定外部知识(例如语法解析器),而这通常对于许多语言而言是不可用的。在本文中,我们提出了一种新的基于字符串模式匹配的段落排序算法,用于将传统文本Q / A扩展到videoQ / A。用户通过自然语言问题与我们的videoQ / A系统交互,而我们的系统则返回三个句子长度的段落以及相应的视频片段作为答案。我们收集了45 GB的Discovery视频和253个中文问题进行评估。实验结果表明,我们的方法优于六个性能最高的排名模型。在相对MRR得分上,它比第二好的方法(基于语言模型)好7.39%,在准确率上,它要高出6.12%。此外,我们还表明,使用训练有素的中文分词工具确实会降低整体videoQ / A性能,其中大多数排名算法的相对MRR,准确性和答案模式召回率均下降了至少10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号