首页> 外文期刊>Expert systems with applications >Recurrent neural networks employing Lyapunov exponents for analysis of doppler ultrasound signals
【24h】

Recurrent neural networks employing Lyapunov exponents for analysis of doppler ultrasound signals

机译:使用Lyapunov指数的递归神经网络用于分析多普勒超声信号

获取原文
获取原文并翻译 | 示例

摘要

The implementation of recurrent neural networks (RNNs) with the Lyapunov exponents for Doppler ultrasound signals classification is presented. This study is based on the consideration that Doppler ultrasound signals are chaotic signals. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Decision making was performed in two stages: computation of Lyapunov exponents as representative features of the Doppler ultrasound signals and classification using the RNNs trained on the extracted features. The present research demonstrated that the Lyapunov exponents are the features which well represent the Doppler ultrasound signals and the RNNs trained on these features achieved high classification accuracies.
机译:提出了利用Lyapunov指数实现多普勒超声信号分类的递归神经网络(RNN)。该研究基于多普勒超声信号是混沌信号的考虑。使用非线性动力学工具(例如Lyapunov指数的计算)已成功测试了此考虑因素。决策分两个阶段执行:计算作为多普勒超声信号代表特征的Lyapunov指数,以及使用对提取的特征进行训练的RNN进行分类。目前的研究表明,李雅普诺夫指数是很好地表示多普勒超声信号的特征,在这些特征上训练的RNNs具有很高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号