首页> 外文期刊>Expert systems with applications >A smart access control using an efficient license plate location and recognition approach
【24h】

A smart access control using an efficient license plate location and recognition approach

机译:使用有效车牌定位和识别方法的智能访问控制

获取原文
获取原文并翻译 | 示例

摘要

Nowadays license plate recognition became a key technique to many automated systems such as road traffic monitoring, automated payment of tolls on high ways or bridges, security access, and parking lots access control. Most of the previous license plate locating (LPL) approaches are not robust in case of low-quality images. Some difficulties result from illumination variance, noise, complex and dirty background. This paper presents a real-time and robust method for license plate location and recognition. Edge features of the car image are very important, and edge density and background color can be used to successfully detect a number plate location according to the characteristics of the number plate. The proposed algorithm can efficiently determine and adjust the plate rotation in skewed images. LP quantization and equalization has been applied as an important step for successful decryption of the LP. It finds the optimal adaptive threshold corresponding to the intensity image obtained after adjusting the image intensity values. An efficient character segmentation algorithm is used in order to segment the characters in the binary license plate image. An optical character recognition (OCR) engine has then been proposed. The OCR engine includes digit dilation, contours adjustment and resizing. Each digit is resized to standard dimensions according to a neural network dataset. The back-propagation neural network (BPNN) is selected as a powerful tool to perform the recognition process. Experiments have been conducted to corroborate the efficiency of the proposed method. Experimental results showed that the proposed method has excellent performance even in case of low-quality images or images exhibiting illumination effects and noise. Experimental results illustrate the great robustness and efficiency of our method.
机译:如今,车牌识别已成为许多自动化系统的关键技术,例如道路交通监控,高速公路或桥梁通行费的自动支付,安全通道和停车场通道控制。在图像质量低下的情况下,大多数以前的车牌定位(LPL)方法都不可靠。照明差异,噪声,复杂而肮脏的背景会造成一些困难。本文提出了一种实时,可靠的车牌定位和识别方法。汽车图像的边缘特征非常重要,边缘密度和背景颜色可根据车牌的特征成功检测车牌位置。所提出的算法可以有效地确定和调整倾斜图像中的印版旋转。 LP量化和均衡已被用作成功解密LP的重要步骤。找到与调整图像强度值后获得的强度图像相对应的最佳自适应阈值。为了分割二进制车牌图像中的字符,使用了有效的字符分割算法。然后提出了光学字符识别(OCR)引擎。 OCR引擎包括数字膨胀,轮廓调整和调整大小。根据神经网络数据集将每个数字调整为标准尺寸。选择反向传播神经网络(BPNN)作为执行识别过程的强大工具。已经进行实验以证实所提出方法的效率。实验结果表明,所提出的方法即使在低质量图像或显示照明效果和噪声的图像中也具有出色的性能。实验结果说明了该方法的强大鲁棒性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号