首页> 外文期刊>Expert Systems with Application >Knowledge-oriented convolutional neural network for causal relation extraction from natural language texts
【24h】

Knowledge-oriented convolutional neural network for causal relation extraction from natural language texts

机译:面向知识的卷积神经网络,用于从自然语言文本中提取因果关系

获取原文
获取原文并翻译 | 示例

摘要

Causal relation extraction is a challenging yet very important task for Natural Language Processing (NLP). There are many existing approaches developed to tackle this task, either rule-based (non-statistical) or machine-learning-based (statistical) method. For rule-based method, extensive manual work is required to construct handcrafted patterns, however, the precision and recall are low due to the complexity of causal relation expressions in natural language. For machine-learning-based method, current approaches either rely on sophisticated feature engineering which is error-prone, or rely on large amount of labeled data which is impractical for causal relation extraction problem. To address the above issues, we propose a Knowledge-oriented Convolutional Neural Network (K-CNN) for causal relation extraction in this paper. K-CNN consists of a knowledge-oriented channel that incorporates human prior knowledge to capture the linguistic clues of causal relationship, and a data-oriented channel that learns other important features of causal relation from the data. The convolutional filters in knowledge-oriented channel are automatically generated from lexical knowledge bases such as WordNet and FrameNet. We propose filter selection and clustering techniques to reduce dimensionality and improve the performance of K-CNN. Furthermore, additional semantic features that are useful for identifying causal relations are created. Three datasets have been used to evaluate the ability of K-CNN to effectively extract causal relation from texts, and the model outperforms current state-of-art models for relation extraction. (C) 2018 Elsevier Ltd. All rights reserved.
机译:因果关系提取对于自然语言处理(NLP)是一项具有挑战性但非常重要的任务。已开发出许多解决此任务的方法,无论是基于规则的(非统计)方法还是基于机器学习的(统计)方法。对于基于规则的方法,需要大量的手工工作来构建手工模式,但是,由于自然语言中因果关系表达的复杂性,其准确性和召回率较低。对于基于机器学习的方法,当前的方法要么依赖于易于出错的复杂特征工程,要么依赖于因果关系提取问题不切实际的大量标记数据。为了解决上述问题,我们提出了一种面向知识的卷积神经网络(K-CNN),用于因果关系提取。 K-CNN包括一个面向知识的渠道,该渠道结合了人类先验知识以捕获因果关系的语言线索,以及一个面向数据的渠道,可从数据中学习因果关系的其他重要特征。面向知识的通道中的卷积过滤器是从词知识库(如WordNet和FrameNet)自动生成的。我们提出了滤波器选择和聚类技术,以减少维数并提高K-CNN的性能。此外,创建了对识别因果关系有用的附加语义特征。已经使用三个数据集来评估K-CNN有效地从文本中提取因果关系的能力,并且该模型的性能优于当前用于关系提取的最新模型。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号