首页> 外文期刊>Expert Systems with Application >Extended interval type-Ⅱ and kernel based sparse representation method for face recognition
【24h】

Extended interval type-Ⅱ and kernel based sparse representation method for face recognition

机译:基于扩展区间Ⅱ型和核的稀疏表示方法的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

In the world of ubiquitous computing, fuzzy logic has been emerged as an important research area in the field of face recognition (FR) applications. In this paper, a new efficient and advanced method; inspired from interval type-II fuzzy membership concept of fuzzy logic is proposed. The motivation behind our method is to exploit the benefit of an extended interval type-II membership function: a new concept to fuzzy logics; in collaboration with kernel based sparse representation for FR To integrate all the pluton, we propose a method called: extended interval type-II and kernel based sparse representation method (ExIntTy2KBSRM). In our proposed method, first we figure out the measure of participation of individual pixels in identifying face images using a variant of Interval type-II fuzzy logic i.e. extended interval type-II membership function in place of type 1 fuzzy logic. Next, we calculate K nearest neighbor to training specimens using simple Euclidean distance metric for sparse representation of each test specimen as a combinatorial of calculated K nearest training specimens. After this, we do classification based on contribution made by calculated train specimens in representation results. The efficacy and effectiveness of our proposed method is shown based on experiments performed on various standard databases. The experimental results show that our method deal with challenges of face recognition more efficiently as compared to other state of art methods, as it integrates the pluton of two different membership function based extended interval type-II fuzzy logics in collaboration with kernel sparse representation. Also, our experimental analysis tells that our proposed method improves the classification accuracy to 2-10% greater than the other existing relevant methods.Impact and significance of the proposed method: The main impact of the proposed method in FR based expert and intelligent systems is that, it considers unseen information available in pixel values of a face image present due to non-linear variations and overlapping of pixels. It also contains the advantage of spatial similar structure information present in face images. This makes the system more effective and efficient in processing face images for FR. Our method also works where Gaussian membership function does not work and discretizes linear and non-linear functions appropriately. Thus, the proposed method is universally applicable to solve more challenges of FR viz. illumination, occlusion, expression etc. and also has application in other areas viz, medical image processing, decision making problems, hand written words recognition, speech processing, watermarking etc. Also, our method makes FR systems computationally more efficient and cost effective by using sparse concept to matrices, which makes system to consume less memory and process data faster. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在普适计算的世界中,模糊逻辑已经成为人脸识别(FR)应用领域中的重要研究领域。本文提出了一种新的高效先进的方法。提出了基于区间Ⅱ型模糊隶属度的模糊逻辑概念。我们方法背后的动机是利用扩展间隔II型隶属函数的好处:模糊逻辑的新概念;与基于FR的基于内核的稀疏表示合作为了集成所有的插件,我们提出了一种方法:扩展间隔II型和基于内核的稀疏表示方法(ExIntTy2KBSRM)。在我们提出的方法中,首先我们使用区间II型模糊逻辑的变体,即扩展区间II型隶属度函数代替类型1模糊逻辑,找出各个像素参与识别人脸图像的度量。接下来,我们使用简单的欧几里德距离度量来计算每个样本的稀疏表示,作为计算出的K个最近训练样本的组合,从而计算出与训练样本最近的K个样本。此后,我们根据计算出的火车样本在表示结果中的贡献进行分类。基于在各种标准数据库上进行的实验,表明了我们提出的方法的有效性。实验结果表明,与其他现有技术方法相比,我们的方法可以更有效地应对人脸识别的挑战,因为它结合了基于内核的稀疏表示,结合了基于两个不同隶属函数的扩展区间II型模糊逻辑的逻辑子。实验分析还表明,与现有的其他相关方法相比,该方法的分类精度提高了2-10%。该方法的影响和意义:该方法对基于FR的专家和智能系统的主要影响是也就是说,它考虑了由于非线性变化和像素重叠而在存在的面部图像的像素值中可用的看不见的信息。它还具有人脸图像中存在空间相似结构信息的优势。这使系统在处理FR的人脸图像时更加有效。我们的方法在高斯隶属函数不起作用并且适当地离散线性函数和非线性函数的情况下也适用。因此,所提出的方法普遍适用于解决FR viz的更多挑战。照明,遮挡,表达等,并且在其他领域也有应用,例如医学图像处理,决策问题,手写单词识别,语音处理,水印等。此外,我们的方法通过使用FR系统使FR系统在计算上更高效和更具成本效益矩阵的概念稀疏,这使系统消耗更少的内存并更快地处理数据。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号