首页> 外文期刊>Expert Systems with Application >FB-STEP: A fuzzy Bayesian network based data-driven framework for spatio-temporal prediction of climatological time series data
【24h】

FB-STEP: A fuzzy Bayesian network based data-driven framework for spatio-temporal prediction of climatological time series data

机译:FB-STEP:基于模糊贝叶斯网络的数据驱动框架,用于气候时间序列数据的时空预测

获取原文
获取原文并翻译 | 示例

摘要

With the recent development of computational intelligence (CI), data-driven models have gained growing interest to be applied in various scientific disciplines. This paper aims at proposing a hybrid Cl-based data-driven framework as a complement for the physics-based models used in climatological prediction. The proposed framework, called FB-STEP, is based on a combination of fuzzy Bayesian strategy and multifractal analysis technique. The focus is to address three major research challenges in multivariate climatological prediction: (1) modeling complex spatio-temporal dependency among climatological variables, (2) dealing with non-linear, chaotic dynamics in climatic time series, and (3) reducing epistemic uncertainty in the data-driven prediction process. The present work not only explores Fuzzy-Bayesian modeling of spatio-temporal processes, but also presents an elegant approach of dealing with intrinsic chaos in time series, through a synergism between multifractal analysis and Bayesian inference mechanism. Similar concepts may also be successfully employed in developing expert or intelligent systems for wide range of applications, including reservoir-water dynamics modeling, flood monitoring, traffic flow modeling, chemical-mechanical process monitoring, and so on. Thus, the present research work carries a significant value not merely in the field of climate research, but also in the domains of Al and machine intelligence. The experimentation has been carried out to spatio-temporally extrapolate the climatic conditions of five different locations in India, with the help of historical data on temperature, humidity, precipitation rate, and soil moisture. A comparative study with popular linear and non-linear methods has validated the efficacy of the proposed data-driven approach for climatological prediction. (C) 2018 Elsevier Ltd. All rights reserved.
机译:随着计算智能(CI)的最新发展,数据驱动模型越来越引起人们的兴趣,可以应用于各种科学领域。本文旨在提出一种基于Cl的混合数据驱动框架,作为气候预测中基于物理学的模型的补充。所提出的框架FB-STEP基于模糊贝叶斯策略和多重分形分析技术的结合。重点是解决多变量气候预测中的三个主要研究挑战:(1)对气候变量之间的时空依赖性进行建模;(2)处理气候时间序列中的非线性混沌动态;以及(3)减少认知不确定性在数据驱动的预测过程中。本工作不仅探索时空过程的模糊贝叶斯建模,而且通过多重分形分析与贝叶斯推理机制之间的协同作用,提出了一种优雅的方法来处理时间序列中的固有混沌。类似的概念也可以成功地用于开发广泛应用的专家或智能系统,包括水库-水动力学建模,洪水监控,交通流建模,化学-机械过程监控等。因此,本研究工作不仅在气候研究领域具有重要价值,而且在铝和机器智能领域也具有重要价值。借助温度,湿度,降水率和土壤湿度的历史数据,进行了该实验,以时空推断印度五个不同地区的气候条件。使用流行的线性和非线性方法进行的比较研究已验证了所提出的数据驱动方法在气候预测中的功效。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号