首页> 外文期刊>Expert Systems with Application >Joint modeling of users, questions and answers for answer selection in CQA
【24h】

Joint modeling of users, questions and answers for answer selection in CQA

机译:用户,问题和答案的联合建模,用于CQA中的答案选择

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose solutions to advance answer selection in Community Question Answering (CQA). Automatically selecting correct answers can significantly improve intelligence for CQA, as users are not required to browse the large quantity of texts and select the right answers manually. Also, automatic answers selection can minimize the time for satisfying users seeking the correct answers and maximize user engagement with the site. Unlike previous works, we propose a hybrid attention mechanism to model question-answer pairs. Specifically, for each word, we calculate the intra-sentence attention indicating its local importance and the inter-sentence attention implying its importance to the counterpart sentence. The inter-sentence attention is based on the interactions between question-answer pairs, and the combination of these two attention mechanisms enables us to align the most informative parts in question-answer pairs for sentence matching. Additionally, we exploit user information for answer selection due to the fact that users are more likely to provide correct answers in their areas of expertise. We model users from their written answers to alleviate data sparsity problem, and then learn user representations according to the informative parts in sentences that are useful for question-answer matching task. This mean of modelling users can bridge the semantic gap between different users, as similar users may have the same way of wording their answers. The representations of users, questions and answers are learnt in an end-to-end neural network in a mean that best explains the interrelation between question answer pairs. We validate the proposed model on a public dataset, and demonstrate its advantages over the baselines with thorough experiments. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提出了解决方案,以提高社区问题解答(CQA)中的答案选择。自动选择正确答案可以大大提高CQA的智能性,因为不需要用户浏览大量文本并手动选择正确答案。此外,自动答案选择可以使满足正确答案的用户所需的时间最短,并使用户对网站的参与度最大化。与以前的作品不同,我们提出了一种混合注意力机制来对问题-答案对进行建模。具体来说,对于每个单词,我们计算指示其局部重要性的句子内注意以及暗示其对对应句子重要性的句子间注意。句间注意是基于问答对之间的交互作用,这两种注意机制的结合使我们能够将问答对中信息量最大的部分对齐以进行句子匹配。此外,由于用户更有可能在其专业领域提供正确答案,因此我们利用用户信息来选择答案。我们从用户的书面答案中建模用户,以缓解数据稀疏性问题,然后根据句子中信息量大的部分来学习用户表示形式,这对问答答案匹配任务很有用。对用户进行建模的这种方式可以弥合不同用户之间的语义鸿沟,因为相似的用户可能有相同的措辞来表达他们的答案。通过端对端神经网络学习用户,问题和答案的表示方式,可以最好地解释问题答案对之间的相互关系。我们在公共数据集上验证了提出的模型,并通过全面的实验证明了其相对于基线的优势。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2019年第3期|563-572|共10页
  • 作者单位

    Guilin Univ Technol, Coll Informat Sci & Engn, Guilin, Peoples R China|Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China|Airborne Troops Training Base, Guilin, Peoples R China;

    Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China;

    Guilin Univ Technol, Coll Informat Sci & Engn, Guilin, Peoples R China;

    Airborne Troops Training Base, Guilin, Peoples R China;

    Univ Queensland, Brisbane, Qld, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Answer selection; User modelling; Attentive neural network;

    机译:答案选择;用户建模;专心神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号