首页> 外文期刊>Expert Systems with Application >Efficient tumor detection in medical images using pixel intensity estimation based on nonparametric approach
【24h】

Efficient tumor detection in medical images using pixel intensity estimation based on nonparametric approach

机译:基于非参数方法的像素强度估计在医学图像中进行高效肿瘤检测

获取原文
获取原文并翻译 | 示例

摘要

Identification of tumor in medical images is an important task which leads to increased survival chances. In many cases, tumor diagnosis in medical images is very complicated since the pixel intensities between benign and malignant tissues may be very close. The identification problem is defined as the intensification of the mutual data between the image pixel intensities and the desired areas (tumors in this paper), depending on a limitation of the overall size of the desired area borders. This paper introduces a new approach for image segmentation in differentiating between benign and malignant tissues through a nonparametric approach. The proposed approach assumes that the probability densities correlated with pixel intensities in the image for each region are not already known. The image intensity is used instead of using the probability. A nonparametric density estimation is proposed and formulates the theoretical data optimization problem by applying curve evolution methods and deriving the correlated gradient flows. It uses level-set techniques to achieve the resulting evolution. The algorithm is applied to 100 sets of different real data in patient images with benign or/and malignant tissues. The experimental results show that the proposed algorithm proved effective in tumor identification with an acceptable accuracy of 93.1%, especially in-patient images diagnosed with carcinoma at an early stage. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在医学图像中识别肿瘤是一项重要任务,它可以提高生存机会。在许多情况下,由于良性和恶性组织之间的像素强度可能非常接近,因此医学图像中的肿瘤诊断非常复杂。识别问题定义为图像像素强度与所需区域(本文中的肿瘤)之间相互数据的增强,取决于所需区域边界的整体大小的限制。本文介绍了一种通过非参数方法区分良性和恶性组织的图像分割新方法。所提出的方法假设与每个区域的图像中的像素强度相关的概率密度是未知的。使用图像强度而不是使用概率。提出了一种非参数密度估计方法,并采用曲线演化方法并推导了相关的梯度流,从而提出了理论上的数据优化问题。它使用水平集技术来实现最终的发展。该算法应用于具有良性或/和恶性组织的患者图像中的100组不同的真实数据。实验结果表明,所提出的算法在识别肿瘤方面是有效的,准确率为93.1%,尤其是早期诊断为癌症的住院患者图像。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号