首页> 外文期刊>Expert Systems with Application >A collaboration-based particle swarm optimizer with history-guided estimation for optimization in dynamic environments
【24h】

A collaboration-based particle swarm optimizer with history-guided estimation for optimization in dynamic environments

机译:基于协作的粒子群优化器,具有历史指导的估计,可在动态环境中进行优化

获取原文
获取原文并翻译 | 示例

摘要

Optimization problems widely exist in many expert and intelligent systems, e.g., greenhouse intelligent control systems in agriculture, energy management systems for hybrid electric vehicle, and job shop scheduling systems in manufacture. For the optimization problems in these systems, the objective functions may change over time. This kind of problem is usually called as dynamic optimization problems (DOPs) or optimizing in dynamic environments. The optimization algorithm plays an important role in designing an expert and intelligent system. In this paper, we present a novel particle swarm optimizer for optimization in dynamic environments. We introduce two schemes to improve performance of particle swarm optimization in dynamic environments. Firstly, the classical particle swarm optimization is enhanced by a collaborative mechanism, in which a target particle learns from another randomly selected particle and the global best one in the swarm. Instead of moving to the new position directly, a worst replacement operator is used to update the swarm, whereby the worst particle in the swarm moves to the better newly generated position. During optimizing, the best solution in each generation is stored. When an environmental change is detected, the historical solutions are retrieved to collaborate with some newly generated solutions to adapt to the new environment. The performance of the proposed algorithm is compared with several reported algorithms over the benchmark problems. Experimental results indicate that the proposed algorithm offers superior performance compared with the competitors. (C) 2018 Elsevier Ltd. All rights reserved.
机译:优化问题广泛存在于许多专家和智能系统中,例如农业中的温室智能控制系统,混合动力汽车的能源管理系统以及制造中的车间调度系统。对于这些系统中的优化问题,目标函数可能会随时间变化。这种问题通常称为动态优化问题(DOP)或在动态环境中进行优化。优化算法在设计专家和智能系统中起着重要作用。在本文中,我们提出了一种用于动态环境优化的新型粒子群优化器。我们引入两种方案来提高动态环境中粒子群优化的性能。首先,经典的粒子群算法通过一种协作机制得到了增强,在协作机制中,目标粒子从另一个随机选择的粒子和群中全局最佳粒子中学习。代替直接移动到新位置,而是使用最差替换运算符来更新群,从而使群中最差的粒子移动到更好的新生成位置。在优化过程中,存储了每一代的最佳解决方案。当检测到环境变化时,将检索历史解决方案以与一些新生成的解决方案协作以适应新环境。在基准问题上,将所提出算法的性能与几种报告算法进行了比较。实验结果表明,与竞争对手相比,该算法具有更好的性能。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号