首页> 外文期刊>Expert Systems with Application >Spiking neural P grey wolf optimization system: Novel strategies for solving non-determinism problems
【24h】

Spiking neural P grey wolf optimization system: Novel strategies for solving non-determinism problems

机译:尖刺神经P灰狼优化系统:解决非确定性问题的新策略

获取原文
获取原文并翻译 | 示例

摘要

Spiking neural P systems (SN P systems, in short) are the latest branch of membrane computing; inspired by the biological behavior of spiking neurons. They are considered true distributed and parallel systems; modeled to solve time consumption problem and presented the concept of parallelism usage in the computing field. This paper proposes novel strategies for solving non-determinism problem of SN P systems. The proposed algorithm relies on the parallelism feature to simulate the social hierarchy, tracking, encircling, and attacking behaviors in the grey wolf optimizer. It is modeled by collaboration between a set of SN P systems to get a feasible solution in polynomial time. Moreover, a new method named the power of signal is proposed to control the copying spikes process between neurons and differentiate between the arithmetic operations. Additionally, a time control approach is proposed to avoid non-determinism inside neurons that applied the determinism feature during firing rules. The theoretical and empirical experiments proved that the algorithm can successfully halt and in addition to the effectiveness of the proposed neural systems in getting an optimal solution in a reasonable time. As a result, this study is counted as a significant advancement in intelligent and optimization systems, whereas it has a direct impact on enhancing the performance of these systems and their applications. (C) 2018 Elsevier Ltd. All rights reserved.
机译:尖峰神经P系统(简称SNP系统)是膜计算的最新分支。受尖峰神经元生物学行为的启发。它们被认为是真正的分布式和并行系统;建模以解决时间消耗问题,并提出了计算领域中并行使用的概念。本文提出了解决SN P系统不确定性问题的新策略。所提出的算法依靠并行性功能来模拟灰太狼优化器中的社会等级,跟踪,包围和攻击行为。通过一组SN P系统之间的协作对其进行建模,以在多项式时间内获得可行的解决方案。此外,提出了一种称为信号功率的新方法来控制神经元之间的复制尖峰过程并区分算术运算。另外,提出了一种时间控制方法来避免在触发规则期间应用确定性特征的神经元内部的不确定性。理论和经验实验证明,该算法可以成功地停止运行,此外,所提出的神经系统在合理的时间内获得最优解的有效性也很有效。结果,这项研究被认为是智能和优化系统的一项重大进步,而它对提高这些系统及其应用程序的性能具有直接影响。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号