首页> 外文期刊>Expert Systems with Application >A comparative study of different texture features for document image retrieval
【24h】

A comparative study of different texture features for document image retrieval

机译:文档图像检索中不同纹理特征的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Due to the rapid increase of different digitised documents, there has been significant attention dedicated to document image retrieval over the past two decades. Finding discriminative and effective features is a fundamental task for providing a fast and more accurate retrieval system. Texture features are generally fast to compute and are suitable for large volume data. Thus, in this study, the effectiveness of texture features widely used in the literature of content-based image retrieval is investigated on document images. Twenty-six different texture feature extraction methods from four main categories of texture features, statistical, transform, model, and structural-based approaches, are considered in this research work to compare their performance on the problem of document image retrieval. Three document image datasets, MTDB, ITESOFT, and CLEF_IP with various content and page layouts are used to evaluate the twenty-six texture-based features on document image retrieval systems. The retrieval results are computed in terms of precision, recall and F-score, and a comparative analysis of the results is also provided. Feature dimensions and time complexity of the texture-based feature methods are further compared. Finally, some conclusions are drawn and suggestions are made about future research directions. (C) 2018 Elsevier Ltd. All rights reserved.
机译:由于不同的数字化文档的迅速增加,在过去的二十年中,人们对文档图像的检索给予了极大的关注。寻找有区别和有效的特征是提供快速,更准确的检索系统的基本任务。纹理特征通常可以快速计算,适用于大量数据。因此,在这项研究中,对文档图像研究了基于内容的图像检索文献中广泛使用的纹理特征的有效性。在这项研究工作中,从纹理特征的四个主要类别(统计,变换,模型和基于结构的方法)中选择了26种不同的纹理特征提取方法,以比较它们在文档图像检索问题上的性能。使用三个具有各种内容和页面布局的文档图像数据集MTDB,ITESOFT和CLEF_IP来评估文档图像检索系统上的二十六个基于纹理的功能。检索结果根据精度,查全率和F分数进行计算,并且还提供了结果的比较分析。进一步比较了基于纹理的特征方法的特征尺寸和时间复杂度。最后,得出了一些结论,并对今后的研究方向提出了建议。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号