首页> 外文期刊>Expert Systems with Application >Unsupervised graph-based feature selection via subspace and pagerank centrality
【24h】

Unsupervised graph-based feature selection via subspace and pagerank centrality

机译:通过子空间和页面等级中心性进行无监督的基于图的特征选择

获取原文
获取原文并翻译 | 示例

摘要

Feature selection has become an indispensable part of intelligent systems, especially with the proliferation of high dimensional data. It identifies the subset of discriminative features leading to better learning performances, i.e., higher learning accuracy, lower computational cost and significant model interpretability. This paper proposes a new efficient unsupervised feature selection method based on graph centrality and subspace learning called UGFS for 'Unsupervised Graph-based Feature Selection'. The method maps features on an affinity graph where the relationships (edges) between feature nodes are defined by means of data points subspace preference. Feature importance score is then computed on the entire graph using a centrality measure. For this purpose, we investigated the Google's PageRank method originally introduced to rank web-pages. The proposed feature selection method has been evaluated using classification and redundancy rates measured on the selected feature subsets. Comparisons with the well-known unsupervised feature selection methods, on gene/expression benchmark datasets, demonstrate the validity and the efficiency of the proposed method. (C) 2018 Elsevier Ltd. All rights reserved.
机译:特征选择已成为智能系统必不可少的部分,尤其是随着高维数据的扩散。它确定了可带来更好学习性能的判别特征的子集,即更高的学习准确性,更低的计算成本和显着的模型可解释性。本文提出了一种基于图形中心性和子空间学习的新型高效无监督特征选择方法,称为“无监督基于图的特征选择”。该方法将特征映射到亲和度图上,其中特征节点之间的关系(边)是通过数据点子空间偏好来定义的。然后使用集中度度量在整个图上计算特征重要性得分。为此,我们调查了最初用于对网页排名的Google的PageRank方法。已使用在所选特征子集上测量的分类和冗余率对提出的特征选择方法进行了评估。在基因/表达基准数据集上与著名的无监督特征选择方法进行比较,证明了该方法的有效性和有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号