首页> 外文期刊>Expert systems with applications >Application Of Multilayer Perceptron And Radial Basis Function Neural Networks In Differentiating Between Chronic Obstructive Pulmonary And Congestive Heart Failure Diseases
【24h】

Application Of Multilayer Perceptron And Radial Basis Function Neural Networks In Differentiating Between Chronic Obstructive Pulmonary And Congestive Heart Failure Diseases

机译:多层感知器和径向基函数神经网络在慢性阻塞性肺疾病和充血性心力衰竭疾病鉴别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Congestive heart failure and chronic obstructive pulmonary disease have similar symptoms which can make their distinction difficult especially at the time of admission or where the access to echocardiogra-phy is limited. The multilayer perceptron (MLP) and radial basis function (RBF) neural networks were used to differentiate between patients (n = 266) suffering one of these diseases, using 42 clinical variables which were normalized following consultations with cardiologists. Bayesian regularization was used to improve the generalization of the MLP network. In order to design the RBF network, K-Means clustering was used to select the centers of radial basis functions, k-nearest neighborhood to define the spread and forward selection to select the optimum number of radial basis functions. A 10-fold cross validation was used to assess the generalization procedure. The MLP led to a sensitivity of 83.9%, specificity of 86% and an area under receiver operating characteristic curve (AUC) of 0.889 ± 0.02 and RBF network resulted in sensitivity of 81.8%, specificity of 88.4% and AUC of 0.924 ± 0.017.
机译:充血性心力衰竭和慢性阻塞性肺疾病具有相似的症状,这可能使其难以区分,尤其是在入院时或获得超声心动图受限的地方。多层感知器(MLP)和径向基函数(RBF)神经网络用于区分42种临床变量,这些患者经过心脏病专家咨询后标准化,以区分其中一种疾病的患者(n = 266)。贝叶斯正则化用于改善MLP网络的泛化。为了设计RBF网络,使用K-Means聚类来选择径向基函数的中心,使用k-最近邻域来定义扩展,并使用正向选择来选择径向基函数的最佳数量。 10倍交叉验证用于评估泛化程序。 MLP导致灵敏度为83.9%,特异性为86%,接收器工作特征曲线下面积(AUC)为0.889±0.02,RBF网络导致灵敏度为81.8%,特异性为88.4%,AUC为0.924±0.017。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号