首页> 外文期刊>Expert systems with applications >Multiclass Least-squares Support Vector Machines For Analog Modulation Classification
【24h】

Multiclass Least-squares Support Vector Machines For Analog Modulation Classification

机译:用于模拟调制分类的多类最小二乘支持向量机

获取原文
获取原文并翻译 | 示例

摘要

This study introduces the usage of multiclass least-squares support vector machines (MC-LS-SVM) for classification purposes of the analog modulated communication signals. Fulfilled study uses our previous papers where ANN and clustering methods were used as classifiers and several key features which were extracted from the instantaneous properties of the intercepted signal for characterizing the modulation types, k-fold cross-validation test, classification accuracy and confusion matrix methods are used for calculating the performance of the MC-LS-SVM classifier. Moreover, the performance of the MC-LS-SVM is compared with our previous studies where ANN and clustering efforts for modulation classification were investigated. According to the computer simulations, 100% correct classification rate was obtained when 10-fold cross-validation test method was used.
机译:本研究介绍了将多类最小二乘支持向量机(MC-LS-SVM)用于模拟调制通信信号的分类目的。完成的研究使用了我们以前的论文,其中使用了人工神经网络和聚类方法作为分类器,并从截获信号的瞬时特性中提取了几个关键特征,以表征调制类型,k倍交叉验证测试,分类准确性和混淆矩阵方法用于计算MC-LS-SVM分类器的性能。此外,将MC-LS-SVM的性能与我们以前的研究进行了比较,在先前的研究中,对ANN和调制分类的聚类工作进行了调查。根据计算机模拟,使用10倍交叉验证测试方法可获得100%正确的分类率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号