首页> 外文期刊>Knowledge-Based Systems >Valley-loss regular simplex support vector machine for robust multiclass classification
【24h】

Valley-loss regular simplex support vector machine for robust multiclass classification

机译:Valley损失常规单纯x支持向量机,用于鲁棒多种多组分类

获取原文
获取原文并翻译 | 示例

摘要

Noise and outlier data processing are important issues to support vector machine (SVM). Although the pinball-loss SVM (Pin-SVM) and ramp-loss SVM (Ramp-SVM) are able to deal with the feature noise and outlier labels respectively, neither can handle both and promoting them from binary-classification to multiclass classification usually requires partitioning strategies. Since regular simplex support vector machine (RSSVM) has been proposed as a novel all-in-one K-classification model with clear advantages over partitioning strategies, developing a novel loss function with feature noise robustness and outlier labels insensitivity meanwhile and embedding it into the framework of RSSVM is potentially promising. In this paper, a newly proposed valley-loss regular simplex support vector machine (V-RSSVM) for robust multiclass classification is presented. Inheriting the merits of both the pinball-type loss and ramp-type loss, valley-loss enjoys not only the robustness to feature noise and outlier labels but also excellent sparseness. To train the V-RSSVM fast, a Concave-Convex Procedure (CCCP) assisted sequential minimization optimization (SMO)-type solver and a speeding up oriented initial solution strategy were developed. We also investigated the robustness, generalization error bound and sparseness of V-RSSVM in theory. Numerical results on twenty-five real-life data sets verify the effectiveness of our proposed V-RSSVM model. (C) 2021 Elsevier B.V. All rights reserved.
机译:噪音和异常数据的处理是支持向量机(SVM)的重要问题。虽然弹球损失SVM(引脚-SVM)和斜坡损失SVM(斜坡SVM)能够分别处理功能,噪音和异常值的标签,既可以处理从二元分类促进他们多类分类,通常需要分区策略。由于常规单纯支持向量机(RSSVM)已被提议作为一种新型的所有功能于一身的K-分类模型具有明显的优势超过分区策略,开发具有特色噪声的鲁棒性和异常值标签不敏感与此同时,一个新的损失函数,并将其嵌入到RSSVM的框架具有潜力的。在本文中,一个新提出的山谷损失正规单纯支持向量机(V-RSSVM)鲁棒多类分类呈现。继承了弹球型损耗和斜坡型损失两者的优点,谷损享受不仅鲁棒性特征的噪音和异常值的标签,而且具有优异的稀疏。为了快速列车的V-RSSVM,辅助凹凸过程(CCCP)顺序最小优化(SMO)型求解器和加快面向初步解决方案战略的开发工作。我们还调查了稳健性,泛化误差约束,并在理论上V-RSSVM的稀疏。在25真实数据集的计算结果验证我们提出的V-RSSVM模型的有效性。 (c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号