首页> 外文期刊>Expert systems with applications >Genetic Algorithm Based Neural Network Approaches For Predicting Churn In Cellular Wireless Network Services
【24h】

Genetic Algorithm Based Neural Network Approaches For Predicting Churn In Cellular Wireless Network Services

机译:基于遗传算法的蜂窝无线网络服务用户流失预测方法

获取原文
获取原文并翻译 | 示例

摘要

Marketing research suggests that it is more expensive to recruit a new customer than to retain an existing customer. In order to retain existing customers, academics and practitioners have developed churn prediction models to effectively manage customer churn. In this paper, we propose two genetic-algorithm (GA) based neural network (NN) models to predict customer churn in subscription of wireless services. Our first GA based NN model uses a cross entropy based criterion to predict customer churn, and our second GA based NN model attempts to directly maximize the prediction accuracy of customer churn. Using real-world cellular wireless services dataset and three different sizes of NNs, we compare the two GA based NN models with a statistical z-score model using several model evaluation criteria, which include prediction accuracy, top 10% decile lift and area under receiver operating characteristics (ROC) curve. The results of our experiments indicate that both GA based NN models outperform the statistical z-score model on all performance criteria. Further, we observe that medium sized NNs perform best and the cross entropy based criterion may be more resistant to overfitting outliers in training dataset.
机译:市场研究表明,招募新客户比保留现有客户的成本更高。为了保留现有客户,学者和从业人员开发了客户流失预测模型,以有效管理客户流失。在本文中,我们提出了两个基于遗传算法(GA)的神经网络(NN)模型来预测无线服务订阅中的客户流失。我们的第一个基于GA的NN模型使用基于交叉熵的准则来预测客户流失,而我们的第二个基于GA的NN模型则尝试直接最大化客户流失的预测准确性。使用现实世界的蜂窝无线服务数据集和三种不同大小的NN,我们使用几种模型评估标准(包括预测准确性,十分位数前10%的升程和接收器下的面积)将两个基于GA的NN模型与统计z得分模型进行比较操作特性(ROC)曲线。我们的实验结果表明,在所有性能指标上,两种基于GA的NN模型均优于统计z评分模型。此外,我们观察到中等大小的NN表现最佳,并且基于交叉熵的标准可能更不适合训练数据集中的过度拟合离群值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号