首页> 外文期刊>Expert systems with applications >Ensemble Of On-line Signature Matchers Based On Overcomplete Feature Generation
【24h】

Ensemble Of On-line Signature Matchers Based On Overcomplete Feature Generation

机译:基于超完备特征生成的在线签名匹配器集成

获取原文
获取原文并翻译 | 示例

摘要

A novel method for building an ensemble of on-line signature verification systems based on one-class classifiers is presented. The ensemble is built concatenating the classifiers obtained by the Random Sub-space on the "original features" and a set of classifiers each trained selecting a different set of "artificial features" for each different subset of users that belong to the validation set. The "artificial features" are extracted using an OverComplete global feature combination, starting from a set of global features a set of artificial features is created by applying mathematical operators to a randomly extracted set of the original ones, then a small subset is selected for verification by running sequential forward floating selection (SFFS).rnFinally a set of One-class classifiers are used to classify, between genuine and impostor, each match between two signatures.rnAs dataset the MCYT signature database is used, our results show that the proposed ensemble outperforms the ensembles based only on the original features. Using only 5 genuine signatures for each user our best system obtains an equal error rate of 4.5 in the skilled forgeries and 1.4 in the Random Forgeries, when 20 genuine signatures are used to train the classifiers an equal error rate of 2.2 in the skilled forgeries and 0.5 in the Random Forgeries are obtained.
机译:提出了一种基于一类分类器的在线签名验证系统集成的新方法。建立该集合以将“随机特征”上的“原始特征”上的分类器和一组分类器连接起来,每个分类器都经过训练,为属于验证集的每个用户子集选择不同的“人工特征”集。使用OverComplete全局特征组合提取“人工特征”,从一组全局特征开始,通过将数学运算符应用于原始提取的一组随机算术运算符,创建一组人工特征,然后选择一小子集进行验证最后通过使用一组一类分类器对真实签名和冒名顶替者在两个签名之间的每个匹配进行分类.rn作为数据集,使用了MCYT签名数据库,我们的结果表明拟议的集成仅基于原始特征就胜过了合奏。当使用20个真实签名训练分类器时,我们的最佳系统对每个用户仅使用5个真实签名,我们的最佳系统在熟练的伪造中获得4.5的相等错误率,在随机伪造中获得1.4的相等错误率。获得随机伪造中的0.5。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号