首页> 外文期刊>Expert systems with applications >Markowitz-based Portfolio Selection With Minimum Transaction Lots, Cardinality Constraints And Regarding Sector Capitalization Using Genetic Algorithm
【24h】

Markowitz-based Portfolio Selection With Minimum Transaction Lots, Cardinality Constraints And Regarding Sector Capitalization Using Genetic Algorithm

机译:基于Markowitz的投资组合选择,具有最小交易手数,基数约束和关于部门资本的遗传算法

获取原文
获取原文并翻译 | 示例

摘要

Heuristic algorithms strengthen researchers to solve more complex and combinatorial problems in a reasonable time. Markowitz's Mean-Variance portfolio selection model is one of those aforesaid problems. Actually, Markowitz's model is a nonlinear (quadratic) programming problem which has been solved by a variety of heuristic and non-heuristic techniques. In this paper a portfolio selection model which is based on Markowitz's portfolio selection problem including three of the most important limitations is considered. The results can lead Markowitz's model to a more practical one. Minimum transaction lots, cardinality constraints (both of which have been presented before in other researches) and market (sector) capitalization (which is proposed in this research for the first time as a constraint for Markowitz model), are considered in extended model. No study has ever proposed and solved this expanded model. To solve this mixed-integer nonlinear programming (NP-Hard), a corresponding genetic algorithm (CA) is utilized. Computational study is performed in two main parts; first, verifying and validating proposed GA and second, studying the applicability of presented model using large scale problems.
机译:启发式算法使研究人员能够在合理的时间内解决更复杂的组合问题。 Markowitz的均值-方差投资组合选择模型是上述问题之一。实际上,Markowitz的模型是一个非线性(二次)编程问题,已经通过各种启发式和非启发式技术解决了。本文考虑了基于Markowitz的投资组合选择问题的投资组合选择模型,其中包括三个最重要的限制。结果可以使Markowitz的模型更实用。在扩展模型中考虑了最小交易手数,基数约束(这两个约束之前已在其他研究中提出过)和市场(部门)资本化(在本研究中首次作为Markowitz模型的约束提出)。尚无研究提出和解决此扩展模型。为了解决这种混合整数非线性规划(NP-Hard),使用了相应的遗传算法(CA)。计算研究分为两个主要部分:首先,验证和验证拟议的遗传算法,其次,使用大规模问题研究所提出模型的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号