首页> 外文期刊>Expert systems with applications >Consumer Credit Scoring Models With Limited Data
【24h】

Consumer Credit Scoring Models With Limited Data

机译:数据受限的消费者信用评分模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper we design the neural network consumer credit scoring models for financial institutions where data usually used in previous research are not available. We use extensive primarily accounting data set on transactions and account balances of clients available in each financial institution. As many of these numerous variables are correlated and have very questionable information content, we considered the issue of variable selection and the selection of training and testing sub-sets crucial in developing efficient scoring models. We used a genetic algorithm for variable selection. In dividing performing and nonperforming loans into training and testing sub-sets we replicated the distribution on Kohonen artificial neural network, however, when evaluating the efficiency of models, we used k-fold cross-validation. We developed consumer credit scoring models with error back-propagation artificial neural networks and checked their efficiency against models developed with logistic regression. Considering the dataset of questionable information content, the results were surprisingly good and one of the error back-propagation artificial neural network models has shown the best results. We showed that our variable selection method is well suited for the addressed problem.
机译:在本文中,我们设计了用于金融机构的神经网络消费者信用评分模型,而以前的研究通常无法获得这些数据。我们使用有关每个金融机构中可用的客户的交易和帐户余额的大量主要会计数据集。由于这些众多变量中的许多变量相互关联且具有非常可疑的信息内容,因此我们认为变量选择的问题以及训练和测试子集的选择对于开发有效的评分模型至关重要。我们使用遗传算法进行变量选择。在将不良贷款和不良贷款划分为训练和测试子集时,我们在Kohonen人工神经网络上复制了分布,但是,在评估模型的效率时,我们使用了k倍交叉验证。我们开发了具有误差反向传播人工神经网络的消费者信用评分模型,并根据逻辑回归开发的模型检查了它们的效率。考虑到可疑信息内容的数据集,结果令人惊讶地好,并且其中一种误差反向传播人工神经网络模型显示了最佳结果。我们证明了我们的变量选择方法非常适合解决的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号