首页> 外文期刊>Expert systems with applications >Modeling And Optimization Of The Growth Rate For Zno Thin Films Using Neural Networks And Genetic Algorithms
【24h】

Modeling And Optimization Of The Growth Rate For Zno Thin Films Using Neural Networks And Genetic Algorithms

机译:基于神经网络和遗传算法的Zno薄膜生长速率建模与优化

获取原文
获取原文并翻译 | 示例

摘要

The process modeling for the growth rate in pulsed laser deposition (PLD)-grown ZnO thin films was investigated using neural networks (NNets) based on the back-propagation (BP) algorithm and the process recipes was optimized via genetic algorithms (GAs). Two input factors were examined with respect to the growth rate as the response factor. D-optimal experimental design technique was performed and the growth rate was characterized by NNets based on the BP algorithm. GAs was then used to search the desired recipes for the desired growth rate on the process. The statistical analysis for those results was then used to verify the fitness of the nonlinear process model. Based on the results, this modeling methodology can explain the characteristics of the thin film growth mechanism varying with process conditions.
机译:基于反向传播(BP)算法,使用神经网络(NNets)研究了脉冲激光沉积(PLD)生长的ZnO薄膜的生长速率的工艺模型,并通过遗传算法(GA)优化了工艺配方。关于增长率作为响应因子检验了两个输入因子。进行了D优化实验设计技术,并基于BP算法通过NNets对生长速率进行了表征。然后使用GA来搜索所需的配方,以获取该过程所需的增长率。然后对这些结果进行统计分析,以验证非线性过程模型的适用性。基于结果,该建模方法可以解释薄膜生长机理随工艺条件而变化的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号