首页> 外文期刊>Expert systems with applications >Adaptive Spherical Gaussian Kernel In Sparse Bayesian Learning Framework For Nonlinear Regression
【24h】

Adaptive Spherical Gaussian Kernel In Sparse Bayesian Learning Framework For Nonlinear Regression

机译:非线性回归的稀疏贝叶斯学习框架中的自适应球形高斯核

获取原文
获取原文并翻译 | 示例

摘要

Kernel based machine learning techniques have been widely used to tackle problems of function approximation and regression estimation. Relevance vector machine (RVM) has state of the art performance in sparse regression. As a popular and competent kernel function in machine learning, conventional Gaussian kernel has unified kernel width with each of basis functions, which make impliedly a basic assumption: the response is represented below certain frequency and the noise is represented above such certain frequency. However, in many case, this assumption does not hold. To overcome this limitation, a novel adaptive spherical Gaussian kernel is utilized for nonlinear regression, and the stagewise optimization algorithm for maximizing Bayesian evidence in sparse Bayesian learning framework is proposed for model selection. Extensive empirical study, on two artificial datasets and two real-world benchmark datasets, shows its effectiveness and flexibility of model on representing regression problem with higher levels of sparsity and better performance than classical RVM. The attractive ability of this approach is to automatically choose the right kernel widths locally fitting RVs from the training dataset, which could keep right level smoothing at each scale of signal.
机译:基于内核的机器学习技术已被广泛用于解决函数逼近和回归估算的问题。相关向量机(RVM)在稀疏回归方面具有最先进的性能。传统的高斯核作为机器学习中流行的,有能力的核函数,其每个基函数具有统一的核宽度,这暗含了一个基本假设:响应表示为一定频率以下,噪声表示为一定频率以上。但是,在许多情况下,这种假设不成立。为了克服这一局限性,将一种新颖的自适应球形高斯核用于非线性回归,并提出了一种在稀疏贝叶斯学习框架中最大化贝叶斯证据的逐步优化算法,用于模型选择。在两个人工数据集和两个现实世界基准数据集上的广泛经验研究表明,该模型在表示回归问题上具有比传统RVM更高的稀疏性和更好的性能,该模型的有效性和灵活性。这种方法的吸引力在于可以从训练数据集中自动选择合适的内核宽度来局部拟合RV,从而可以在每个信号尺度上保持正确的电平平滑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号