首页> 外文期刊>Expert systems with applications >Iterative Feature Construction For Improving Inductivelearning Algorithms
【24h】

Iterative Feature Construction For Improving Inductivelearning Algorithms

机译:迭代特征构造的改进归纳学习算法

获取原文
获取原文并翻译 | 示例

摘要

Inductive learning algorithms, in general, perform well on data that have been pre-processed to reduce complexity. By themselves they arc not particularly effective in reducing data complexity while learning difficult concepts. Feature construction has been shown to reduce complexity of space spanned by input data. In this paper, we present an iterative algorithm for enhancing the performance of any inductive learning process through the use of feature construction as a pre-processing step. We apply the procedure on three learning methods, namely genetic algorithms, C4.5 and lazy learner, and show improvement in performance.
机译:通常,归纳学习算法可以对经过预处理以降低复杂性的数据表现良好。在学习困难的概念的同时,它们本身在降低数据复杂性方面并不是特别有效。事实表明,特征构造可以减少输入数据所占空间的复杂性。在本文中,我们提出了一种迭代算法,可通过将特征构造用作预处理步骤来增强任何归纳学习过程的性能。我们将该程序应用于三种学习方法,即遗传算法,C4.5和惰性学习器,并显示出性能的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号