首页> 外文期刊>Expert systems with applications >Using A Hybrid Meta-evolutionary Rule Mining Approach As A Classification Response Model
【24h】

Using A Hybrid Meta-evolutionary Rule Mining Approach As A Classification Response Model

机译:使用混合元进化规则挖掘方法作为分类响应模型

获取原文
获取原文并翻译 | 示例

摘要

Data mining usually means the approaches and appliances for the valid new knowledge discovery from databases.A response model can be built as a decision model for prediction or classification of a domain problem potential like expert systems.In this paper,a hybrid meta-evolutionary rule mining based approach to assess numerical data pattern in the classification problems is proposed for extracting the decision rules including the predictors,the corresponding inequalities and parameters simultaneously so as to building a decision-making model with maximum classification accuracy.In real world,problems are highly nonlinear in nature so that it's hard to develop a comprehensive model taking into account all the independent variables through the conventional statistical methods.Recently,nonlinear and complex machine learning approaches such as neural networks and support vector machines have been demonstrated to be with more reliable than the conventional statistical approaches.Although the usefulness of using neural networks and support machines has been reported in literatures,the most obstacles are in model building and use of model in which the classification rules are hard to be realized.Through two numerical experiments,we compared our results against the commercial data mining software and other methods in literature,and then we show experimentally that the proposed approach is promising for improving prediction accuracy and enhancing the modeling simplicity.
机译:数据挖掘通常是指从数据库中发现有效的新知识的方法和工具。可以将响应模型作为决策模型构建,以对领域问题潜能进行预测或分类,例如专家系统。本文提出了一种混合元进化规则提出了一种基于挖掘的方法来评估分类问题中的数值数据模式,以同时提取包括预测变量,对应的不等式和参数的决策规则,从而建立具有最大分类精度的决策模型。本质上讲是非线性的,因此很难通过常规的统计方法来开发一个考虑所有自变量的综合模型。最近,已证明非线性和复杂的机器学习方法(例如神经网络和支持向量机)比传统的统计方法。在文献中已经报道了使用神经网络和支持机器的有用性,其中最大的障碍是模型的建立和模型的使用,这些模型难以实现分类规则。通过两次数值实验,我们将结果与商业数据进行了比较。挖掘软件和文献中的其他方法,然后我们通过实验证明了该方法对于提高预测精度和增强建模简单性很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号