首页> 外文期刊>Expert systems with applications >The Comparisons Of Data Mining Techniques For The Predictive Accuracy Of Probability Of Default Of Credit Card Clients
【24h】

The Comparisons Of Data Mining Techniques For The Predictive Accuracy Of Probability Of Default Of Credit Card Clients

机译:信用卡客户违约概率预测准确性数据挖掘技术的比较

获取原文
获取原文并翻译 | 示例

摘要

This research aimed at the case of customers' default payments in Taiwan and compares the predictive accuracy of probability of default among six data mining methods.From the perspective of risk management,the result of predictive accuracy of the estimated probability of default will be more valuable than the binary result of classification - credible or not credible clients.Because the real probability of default is unknown,this study presented the novel "Sorting Smoothing Method" to estimate the real probability of default.With the real probability of default as the response variable (Y),and the predictive probability of default as the independent variable (X),the simple linear regression result ( Y = A + BX) shows that the forecasting model produced by artificial neural network has the highest coefficient of determination; its regression intercept (A) is close to zero,and regression coefficient (B) to one.Therefore,among the six data mining techniques,artificial neural network is the only one that can accurately estimate the real probability of default.
机译:本文针对台湾地区客户的违约支付情况,比较了六种数据挖掘方法对违约概率的预测准确性。从风险管理的角度来看,对违约概率的预测准确性将具有更大的价值。由于分类的二元结果-可信或不可信的客户。由于违约的真实概率是未知的,本研究提出了新颖的“排序平滑法”来估计违约的真实概率。以违约的真实概率作为响应变量(Y),默认违约的预测概率为自变量(X),简单的线性回归结果(Y = A + BX)表明,人工神经网络生成的预测模型具有最高的确定系数;因此,在六种数据挖掘技术中,人工神经网络是唯一可以准确估计违约率的真实方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号