首页> 外文期刊>Expert systems with applications >Multinomial logistic regression and product unit neural network models: Application of a new hybrid methodology for solving a classification problem in the livestock sector
【24h】

Multinomial logistic regression and product unit neural network models: Application of a new hybrid methodology for solving a classification problem in the livestock sector

机译:多项逻辑回归和产品单位神经网络模型:一种新的混合方法在解决畜牧业分类问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

This work presents a new approach for multi-class pattern recognition based on the hybridization of a linear and nonlinear model. We propose multinomial logistic regression where some new covariates are defined by a product unit neural network, where in turn, the nonlinear basis functions are constructed with the product of the inputs raised to arbitrary powers. The application of this methodology involves, first of all, training the coefficients and the basis structure of product unit models using techniques based on artificial neural networks and evolutionary algorithms, followed by the application of multinomial logistic regression to both the new derived features and the original ones. To evaluate the efficacy of our technique we pose a difficult problem, the classification of sheep with respect to their milk production in different lactations, using covariates that only involve the first weeks of lactation. This enables the productive capacity of the animal to be identified more rapidly and leads to a faster selection process in determining the best producers. The results obtained with our approach are compared to other classification methodologies. Although several of these methodologies offer good results, the percentage of cases correctly classified was higher with our approach, which shows how instrumental the potential use of this methodology is for decision making in livestock enterprises, a sector relatively untouched by the technological innovations in business management that have been appearing in the last few years.
机译:这项工作提出了一种基于线性和非线性模型混合的多类模式识别的新方法。我们提出多项式逻辑回归,其中一些新的协变量由乘积单位神经网络定义,而反过来,非线性基础函数由输入乘以任意幂的乘积构成。该方法的应用首先涉及使用基于人工神经网络和进化算法的技术训练产品单元模型的系数和基础结构,然后将多项逻辑回归应用于新的派生特征和原始特征。那些。为了评估我们技术的有效性,我们提出了一个难题,即使用仅涉及泌乳前几周的协变量对绵羊在不同泌乳期的产奶量进行分类。这使得能够更快地确定动物的生产能力,并在确定最佳生产者时导致更快的选择过程。用我们的方法获得的结果与其他分类方法进行了比较。尽管这些方法中的几种提供了良好的结果,但使用我们的方法正确分类的案例所占的百分比更高,这表明该方法的潜在用途对畜牧企业的决策有多么重要的作用,而畜牧企业相对不受企业管理技术创新的影响在过去的几年中出现了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号