首页> 外文期刊>Expert systems with applications >Accumulated strain prediction of polypropylene modified marshall specimens in repeated creep test using artificial neural networks
【24h】

Accumulated strain prediction of polypropylene modified marshall specimens in repeated creep test using artificial neural networks

机译:人工人工神经网络在反复蠕变试验中聚丙烯修饰马歇尔试样的累积应变预测。

获取原文
获取原文并翻译 | 示例

摘要

This study presents an application of artificial neural networks (ANN) for the prediction of repeated creep test results for polypropylene (PP) modified asphalt mixtures. Polypropylene fibers are used to modify the bituminous binder in order to improve the physical and mechanical properties of the resulting asphaltic mixture. Marshall specimens, fabricated with M-03 type polypropylene fibers at optimum bitumen content were tested using universal testing machine (UTM-5P) in order to determine their rheolog-ical/creep behavior under repeated loading. Different load values and loading patterns have been applied to the previously prepared specimens at a predetermined temperature. It has been shown that the addition of polypropylene fibers results in improved Marshall stabilities and decrease in the flow values, providing the increase of the service life of samples under repeated creep testing. The proposed ANN model uses the physical properties of standard Marshall specimens such as polypropylene type, specimen height, unit weight, voids in mineral aggregate, voids filled with asphalt, air voids and repeated creep test properties such as rest period and pulse counts in order to predict the accumulated strain values obtained at the end of mechanical tests. Moreover parametric analyses have been carried out. The results of parametric analyses were used to evaluate the accumulated strain of the Marshall specimens subjected to repeated load creep tests in a quite well manner.
机译:这项研究提出了人工神经网络(ANN)在预测聚丙烯(PP)改性沥青混合物的重复蠕变试验结果中的应用。聚丙烯纤维用于改性沥青粘结剂,以改善所得沥青混合物的物理和机械性能。使用通用测试机(UTM-5P)对用最佳沥青含量的M-03型聚丙烯纤维制成的马歇尔试样进行测试,以确定其在反复加载下的流变学/蠕变行为。在预先确定的温度下,已将不同的载荷值和载荷模式应用于了先前准备的样本。已经表明,聚丙烯纤维的添加导致改进的马歇尔稳定性和流动值的降低,从而在重复的蠕变测试下增加了样品的使用寿命。拟议的ANN模型使用了标准的马歇尔标本的物理特性,例如聚丙烯类型,标本高度,单位重量,矿物骨料中的空隙,填充有沥青的空隙,空气空隙以及重复的蠕变测试特性(如静置时间和脉冲计数),以便预测在机械测试结束时获得的累积应变值。此外,已经进行了参数分析。参数分析的结果被用来以很好的方式评估经过反复载荷蠕变测试的马歇尔试样的累积应变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号