首页> 外文期刊>Expert systems with applications >A computational method of forecasting based on high-order fuzzy time series
【24h】

A computational method of forecasting based on high-order fuzzy time series

机译:基于高阶模糊时间序列的预测计算方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a computational method of forecasting based on high-order fuzzy time series. The developed computational method provides a better approach to overcome the drawback of existing high-order fuzzy time series models. Its simplicity lies with the use of differences in consecutive values of various orders as forecasting parameter and a w-step fuzzy predictor in place of complicated computations of fuzzy logical relations. The objective of the present study is to examine the suitability of various high-order fuzzy time series models in forecasting. The general suitability of the developed method has been tested by implementing it in the forecasting of student enrollments of the University of Alabama and in the forecasting of crop (Lahi) production, a case of high uncertainty in time series data. The results obtained have been compared in terms of average error of forecast to show superiority of the proposed model.
机译:本文提出了一种基于高阶模糊时间序列的预测计算方法。所开发的计算方法为克服现有高阶模糊时间序列模型的缺陷提供了一种更好的方法。其简单性在于使用各种阶次的连续值的差异作为预测参数,并使用w阶模糊预测器代替模糊逻辑关系的复杂计算。本研究的目的是检验各种高阶模糊时间序列模型在预测中的适用性。通过在阿拉巴马大学的学生入学预测和农作物(Lahi)产量的预测中实施该方法,测试了所开发方法的一般适用性,这种情况在时间序列数据中存在很高的不确定性。将所获得的结果按照预测的平均误差进行比较,以显示所提出模型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号