首页> 外文期刊>Expert systems with applications >Partitions based computational method for high-order fuzzy time series forecasting
【24h】

Partitions based computational method for high-order fuzzy time series forecasting

机译:基于分区的高阶模糊时间序列预测计算方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a computational method of forecasting based on multiple partitioning and higher order fuzzy time series. The developed computational method provides a better approach to enhance the accuracy in forecasted values. The objective of the present study is to establish the fuzzy logical relations of different order for each forecast. Robustness of the proposed method is also examined in case of external perturbation that causes the fluctuations in time series data. The general suitability of the developed model has been tested by implementing it in forecasting of student enrollments at University of Alabama. Further it has also been implemented in the forecasting the market price of share of State Bank of India (SBI) at Bombay Stock Exchange (BSE), India. In order to show the superiority of the proposed model over few existing models, the results obtained have been compared in terms of mean square and average forecasting errors.
机译:本文提出了一种基于多重划分和高阶模糊时间序列的预测计算方法。发达的计算方法提供了一种更好的方法来提高预测值的准确性。本研究的目的是为每个预测建立不同顺序的模糊逻辑关系。在外部扰动导致时间序列数据波动的情况下,还检查了所提出方法的鲁棒性。通过在阿拉巴马大学的学生入学预测中实施该模型,测试了该模型的一般适用性。此外,在预测印度国家银行(SBI)在印度孟买证券交易所(BSE)的股票市场价格时,也已经采用了该方法。为了显示所提出的模型相对于少数几个现有模型的优越性,已对获得的结果进行了均方和平均预测误差方面的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号