首页> 外文期刊>Expert systems with applications >An automotive generator fault diagnosis system using discrete wavelet transform and artificial neural network
【24h】

An automotive generator fault diagnosis system using discrete wavelet transform and artificial neural network

机译:基于离散小波变换和人工神经网络的汽车发电机故障诊断系统

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a fault diagnosis system for automotive generators using discrete wavelet transform (DWT) and an artificial neural network. Conventional fault indications of automotive generators generally use an indicator to inform the driver when the charging system is malfunction. But this charge indicator tells only if the generator is normal or in a fault condition. In the present study, an automotive generator fault diagnosis system is developed and proposed for fault classification of different fault conditions. The proposed system consists of feature extraction using discrete wavelet analysis to reduce complexity of the feature vectors together with classification using the artificial neural network technique. In the output signal classification, both the back-propagation neural network (BPNN) and generalized regression neural network (CRNN) are used to classify and compare the synthetic fault types in an experimental engine platform. The experimental results indicate that the proposed fault diagnosis is effective and can be used for automotive generators of various engine operating conditions.
机译:本文介绍了一种使用离散小波变换(DWT)和人工神经网络的汽车发电机故障诊断系统。汽车发电机的常规故障指示通常在充电系统发生故障时使用指示器来通知驾驶员。但是此充电指示器仅指示发电机是正常还是故障状态。在本研究中,开发并提出了一种汽车发电机故障诊断系统,用于对不同故障条件进行故障分类。所提出的系统包括使用离散小波分析进行特征提取以减少特征向量的复杂性以及使用人工神经网络技术进行分类。在输出信号分类中,使用反向传播神经网络(BPNN)和广义回归神经网络(CRNN)对实验引擎平台中的综合故障类型进行分类和比较。实验结果表明,提出的故障诊断方法是有效的,可用于各种发动机工况的汽车发电机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号