首页> 外文期刊>Expert systems with applications >Fault Diagnosis Of Spur Bevel Gear Box Using Discrete Wavelet Features And Decision Tree Classification
【24h】

Fault Diagnosis Of Spur Bevel Gear Box Using Discrete Wavelet Features And Decision Tree Classification

机译:基于离散小波特征和决策树分类的正齿轮锥齿轮箱故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The wavelet transform (WT) is used to represent all possible types of transients in vibration signals generated by faults in a gear box. It is shown that the transform provides a powerful tool for condition monitoring and fault diagnosis. The vibration signal of a spur bevel gear box in different conditions is used to demonstrate the application of various wavelets in feature extraction. In present work, a discrete wavelet, Daubechies wavelets (db1-db15) is used for feature extraction and their relative effectiveness in feature extraction is compared. The major steps in pattern classification are feature extraction and classification. This paper investigates the use of discrete wavelets for feature extraction and a Decision Tree for classification. J48 Decision Tree algorithm has been used for feature selection as well as for classification. This paper illustrates the powerfulness and flexibility of the discrete wavelet transform to decompose linear and non-linear processing of vibration signal.
机译:小波变换(WT)用于表示齿轮箱故障产生的振动信号中所有可能的瞬态类型。结果表明,该转换为状态监视和故障诊断提供了强大的工具。正齿轮伞齿轮箱在不同条件下的振动信号被用来演示各种小波在特征提取中的应用。在当前的工作中,离散小波,道贝基斯小波(db1-db15)用于特征提取,并比较了它们在特征提取中的相对有效性。模式分类的主要步骤是特征提取和分类。本文研究了离散小波在特征提取中的应用以及决策树在分类中的应用。 J48决策树算法已用于特征选择和分类。本文说明了离散小波变换分解振动信号的线性和非线性处理的强大功能和灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号