首页> 外文期刊>Expert systems with applications >A New Sentence Similarity Measure And Sentence Based Extractive Technique For Automatic Text Summarization
【24h】

A New Sentence Similarity Measure And Sentence Based Extractive Technique For Automatic Text Summarization

机译:一种新的句子相似度度量和基于句子的自动文本摘要提取技术

获取原文
获取原文并翻译 | 示例

摘要

The technology of automatic document summarization is maturing and may provide a solution to the information overload problem. Nowadays, document summarization plays an important role in information retrieval. With a large volume of documents, presenting the user with a summary of each document greatly facilitates the task of finding the desired documents. Document summarization is a process of automatically creating a compressed version of a given document that provides useful information to users, and multi-document summarization is to produce a summary delivering the majority of information content from a set of documents about an explicit or implicit main topic. In our study we focus on sentence based extractive document summarization. We propose the generic document summarization method which is based on sentence clustering. The proposed approach is a continue sentence-clustering based extractive summarization methods, proposed in Alguliev [Alguliev, R. M., Aliguliyev, R. M., Bagirov, A. M. (2005). Global optimization in the summarization of text documents. Automatic Control and Computer Sciences 39, 42-47], Aliguliyev (Aliguliyev, R. M. (2006). A novel partitioning-based clustering method and generic document summarization. In Proceedings of the 2006 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT 2006 Workshops) (WI-IATW'06), 18-22 December (pp. 626-629) Hong Kong, China], Alguliev and Alyguliev [Alguliev, R. M., Alyguliev, R. M. (2007). Summarization of text-based documents with a determination of latent topical sections and information-rich sentences. Automatic Control and Computer Sciences 41, 132-140] Aliguliyev, [Aliguliyev, R. M. (2007). Automatic document summarization by sentence extraction. Journal of Computational Technologies 12, 5-15.]. The purpose of present paper to show, that summarization result not only depends on optimized function, and also depends on a similarity measure. The experimental results on an open benchmark datasets from DUC01 and DUC02 show that our proposed approach can improve the performance compared to sate-of-the-art summarization approaches.
机译:自动文档摘要技术已经成熟,可以为信息过载问题提供解决方案。如今,文档摘要在信息检索中起着重要的作用。对于大量的文档,向用户显示每个文档的摘要将极大地简化查找所需文档的任务。文档摘要是自动创建给用户提供有用信息的给定文档的压缩版本的过程,而多文档摘要是产生摘要,该摘要提供关于明确或隐含主要主题的一组文档中的大多数信息内容。在我们的研究中,我们专注于基于句子的提取文档摘要。我们提出了基于句子聚类的通用文档摘要方法。所提出的方法是在Alguliev [Alguliev,R. M.,Aliguliyev,R. M.,Bagirov,A. M.(2005)中提出的基于句子聚类的连续摘要方法。文本文件摘要中的全局优化。自动控制和计算机科学39,42-47],Aliguliyev(Aliguliyev,RM(2006)。一种新颖的基于分区的聚类方法和通用文档摘要。在2006 IEEE / WIC / ACM国际网络智能和智能会议论文集中代理技术(WI-IAT 2006研讨会)(WI-IATW'06),12月18日至22日(第626-629页,中国香港),Alguliev和Alyguliev [Alguliev,RM,Alyguliev,RM(2007)。基于文本的文档的确定,确定潜在的主题部分和信息丰富的句子。自动控制和计算机科学41,132-140] Aliguliyev,[Aliguliyev,RM(2007)。通过句子提取自动总结文档。 [12,5-15。]。本文的目的是表明,汇总结果不仅取决于优化的功能,还取决于相似性的度量。在DUC01和DUC02的开放基准数据集上的实验结果表明,我们的建议与最新的汇总方法相比,ed方法可以提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号